Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Coordination Polymer Based on Nickel(II) Maleate and 4′-Phenyl-2,2′:6′,2″-Terpyridine: Synthesis, Crystal Structure and Conjugated Thermolysis

  • 90 Accesses

Abstract

New complex (1) based on nickel(II) maleate and 4′-phenyl-2,2′:6′,2″-terpyridine (L) was synthesized. The complex 1 is a 1D coordination polymer formed from a L-Ni(II) node bridged by maleate ligands and crystallizes in monoclinic form with space group P21/n. There are two Ni(II) moiety’s in the asymmetric unit. Each nickel atom is five coordination and is chelated by three nitrogen atoms of L and two oxygen atoms of Mal fragments with the formation of a NiN3O2 chelate node. The polyhedron of the first Ni(II) moiety is close to the ideal tetragonal pyramidal structure, while the polyhedron of the second Ni(II) moiety belongs to the distorted tetragonal pyramidal structure. The main stages and kinetics features of the conjugated thermolysis of complex 1 were evaluated. Metal–polymer nanocomposite containing Ni nanoparticles uniformly distributed in a stabilizing nitrogen-containing polymer matrix was obtained.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

References

  1. 1.

    G.I. Dzhardimalieva, I.E. Uflyand, Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science. RSC Adv. 7, 42242–42288 (2017)

  2. 2.

    A.D. Pomogailo, G.I. Dzhardimalieva, A.S. Rozenberg, D.M. Muraviev, Kinetics and mechanism of in situ simultaneous formation of metal nanoparticles in stabilizing polymer matrix. J. Nanopart. Res. 5, 497–519 (2003)

  3. 3.

    VYu. Musatova, S.A. Semenov, D.V. Drobot, A.S. Pronin, A.D. Pomogailo, G.I. Dzhardimalieva, V.I. Popenko, Synthesis and thermal conversions of unsaturated nickel(II) dicarboxylates as precursors of metallopolymer nanocomposites. Russ. J. Inorg. Chem. 61, 1111–1124 (2016)

  4. 4.

    S.A. Semenov, VYu. Musatova, D.V. Drobot, G.I. Dzhardimalieva, Thermal decomposition of unsaturated nickel(II) dicarboxylates. Russ. J. Inorg. Chem. 63, 1217–1224 (2018)

  5. 5.

    M. Padmanabhan, J.C. Joseph, A. Thirumurugan, C.N.R. Rao, Maleate–fumarate conversion and other novel aspects of the reaction of a Co(II) maleate with pyridine and bipyridine. Dalton Trans. 21, 2809–2811 (2008)

  6. 6.

    J.-M. Yang, Z.-H. Zhou, H. Zhang, H.-L. Wan, S.-J. Lu, Temperature effect on the conversions of phthalato and maleato manganese(II) complexes with diamine ligands. Inorg. Chim. Acta 358, 1841–1849 (2005)

  7. 7.

    L.I. Yudanova, V.A. Logvinenko, N.F. Yudanov, N.A. Rudina, A.V. Ishchenko, P.P. Semyannikov, L.A. Sheludyakova, N.I. Alferova, Thermolysis of copper(II) salts of maleic acid. Synthesis of metal–polymer composites. Russ. J. Coord. Chem. 39, 415–420 (2013)

  8. 8.

    L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, N.F. Yudanov, P.P. Semyannikov, S.I. Kozhemyachenko, I.V. Korolkov, N.A. Rudina, A.V. Ishchenko, Maleates of Mn(II), Fe(II), Co(II), and Ni(II) as precursors for synthesis of metal-polymer composites. Russ. J. Inorg. Chem. 59, 1180–1186 (2014)

  9. 9.

    V.A. Logvinenko, L.I. Yudanova, N.F. Yudanov, G.N. Chekhova, Thermal analysis of transition metal salts of carboxylic acids. The way for the synthesis of metal–polymer composites. J. Therm. Anal. Calorim. 74, 395–399 (2003)

  10. 10.

    L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, I.V. Korolkov, A.V. Ishchenko, N.A. Rudina, Regularities of thermolysis for the Fe(II), Co(II), and Ni(II) salts of maleic and ortho-phthalic acids with the formation of metal/polymer composites. Russ. J. Coord. Chem. 43, 446–452 (2017)

  11. 11.

    A.K. Nikumbh, S.K. Pardeshi, M.N. Raste, A study of the thermal decomposition of copper(II) and zinc(II) malonate, maleate and succinate complexes using direct current electrical conductivity measurements. Thermochim. Acta 374, 115–128 (2001)

  12. 12.

    N.-Q. Bui, C. Geantetand, G. Berhault, Activation of regenerated CoMo/Al2O3 hydrotreating catalysts by organic additives—The particular case of maleic acid. Appl. Catal. A 572, 185–196 (2019)

  13. 13.

    L.I. Yudanova, V.A. Logvinenko, N.F. Yudanov, N.A. Rudina, A.V. Ishchenko, P.P. Semyannikov, L.A. Sheludyakova, N.I. Alferova, A.I. Romanenko, O.B. Anikeev, Preparation of metal–polymer composites through the thermolysis of Fe(II), Co(II), and Ni(II) maleates. Inorg. Mater. 49, 1055–1060 (2013)

  14. 14.

    N.P. Porolo, Z.G. Aliev, G.I. Dzhardimalieva, I.N. Ivleva, I.E. Uflyand, A.D. Pomogailo, N.S. Ovanesyan, Synthesis and reactivity of metal-containing monomers. Synthesis and structure of salts of unsaturated dicarboxylic acids. Russ. Chem. Bull. 46, 362–370 (1997)

  15. 15.

    L.I. Yudanova, V.A. Logvinenko, L.A. Sheludyakova, N.F. Yudanov, G.N. Chekhova, N.I. Alferova, V.I. Alekseev, P.P. Semyannikov, V.I. Lisoivan, Thermal decomposition of solid solutions in systems of Fe(II), Co(II), and Ni(II) hydrogen maleates with the formation of bimetallic nanoparticles. Russ. J. Inorg. Chem. 53, 1459 (2008)

  16. 16.

    I.E. Uflyand, G.I. Dzhardimalieva, Nanomaterials Preparation by Thermolysis of Metal Chelates (Springer, Cham, 2018)

  17. 17.

    S.A. Semenov, VYu. Musatova, D.V. Drobot, G.I. Dzhardimalieva, Quantitative description of properties of nickel-containing nanocomposites affecting their magnetic characteristics. Russ. J. Inorg. Chem. 63, 1424–1426 (2018)

  18. 18.

    M. Badea, R. Olar, D. Marinescu, G. Vasile, Some new acrylate complexes as a criterion in their selection for further co-polymerization reaction. J. Therm. Anal. Calorim. 80, 683–685 (2005)

  19. 19.

    C.-B. Liu, M.-X. Yu, X.-J. Zheng, L.-P. Jin, S. Gao, S.-Z. Lu, Structural change of supramolecular coordination polymers of itaconic acid and 1,10-phenanthroline along lanthanide series. Inorg. Chim. Acta 358, 2687–2696 (2005)

  20. 20.

    G.V. Scaeteanu, M.C. Chifiriuc, C. Bleotu, C. Kamerzan, L. Marutescu, C.G. Daniliuc, C. Maxim, L. Calu, R. Olar, M. Badea, Synthesis, structural characterization, antimicrobial activity, and in vitro biocompatibility of new unsaturated carboxylate complexes with 2,2′-bipyridine. Molecules 23, 157 (2018)

  21. 21.

    A. Uhrinová, J. Kuchár, A. Orendáčová, M. Pitoňák, J. Federič, J. Noga, J. Černá, [Ni(bpy)(mal)(H2O)3]·H2O and [Ni(4,4′-dmbpy)(mal)(H2O)3]·1.5H2O: syntheses, crystal structures, magnetic properties, and computational study of stacking interactions. J. Coord. Chem. 70, 2999–3018 (2017)

  22. 22.

    A. Pavlová, J. Černák, K. Harm, Bis(2,2′-bipyridine-k2N,N’)(maleate-k2O1,O1′)nickel(II) 7.34-hydrate. Acta Crystallogr. Sect. E 64, m1536–m1537 (2008)

  23. 23.

    M. Li, X. Fu, C. Wang, Tri-aqua-(2,2′-bi-pyridine)maleatonickel(II) monohydrate. Acta Crystallogr. Sect. E 62, m865–m866 (2006)

  24. 24.

    L. Wiehl, J. Schreuer, E. Haussühl, Crystal structure of triaqua-1,10-phenanthroline-nickel(II) maleate dihydrate, Ni(H2O)3(C12H8N2)(C4H2O4)·2H2O. Z. Kristallogr. - New Cryst. Struct. 223, 82–84 (2008)

  25. 25.

    Y.-Q. Zheng, J.-L. Lin, Z.-P. Kong, B.-Y. Chen, Self-assemblies of Ni(II) with phenanthroline and maleate anions: [Ni(H2O)3(phen)L].H2O (1) and [Ni(H2O)2(phen)L].2H2O (2) with H2L = maleic acid. J. Chem. Crystallogr. 32, 399–408 (2002)

  26. 26.

    I.E. Uflyand, V.A. Zhinzhilo, L.S. Lapshina, A.A. Novikova, V.E. Burlakova, G.I. Dzhardimalieva, Conjugated thermolysis of metal chelate monomers based on cobalt acrylate complexes with polypyridyl ligands and tribological performance of nanomaterials obtained. ChemistrySelect 3, 8998–9007 (2018)

  27. 27.

    H.-H. Zou, L. Wang, Z.-X. Long, Q.-P. Qin, Z.-K. Song, T. Xie, S.-H. Zhang, Y.-C. Liu, B. Lin, Z.-F. Chen, Preparation of 4-([2,2′:6′,2″-terpyridin]-4′-yl)-N, N-diethylaniline NiII and PtII complexes and exploration of their in vitro cytotoxic activities. Eur. J. Med. Chem. 108, 1–12 (2016)

  28. 28.

    E.C. Constable, J. Lewis, M.C. Liptrot, P.R. Raithby, The coordination chemistry of 4′-phenyl-2,2′:6′,2″-terpyridine; the synthesis, crystal and molecular structures of 4′-phenyl-2,2′:6′,2″-terpyridine and bis(4′-phenyl-2,2′:6′,2″-terpyridine)nickel(II) chloride decahydrate. Inorg. Chim. Acta 178, 47–54 (1990)

  29. 29.

    W.-W. Fu, Y.-Q. Li, Y. Liu, M.-S. Chen, W. Li, Y.-Q. Yang, An infinite two-dimensional hybrid water–chloride network in a 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine nickel(II) matrix. Acta Cryst. E 73, 871–875 (2017)

  30. 30.

    W.-W. Fu, D.-Z. Kuang, F.-X. Zhang, Y. Liu, W. Li, Y.-F. Kuang, Synthesis, crystal structure and properties of the nickel(II) 4′-(p-methoxy1pheny1)-2, 2′:6′,2″-terpyridine complex. Chin. J. Inorg. Chem. 29, 654–658 (2013)

  31. 31.

    J. McMurtrie, I. Dance, Crystal packing in metal complexes of 4′-phenylterpyridine and related ligands: occurrence of the 2D and 1D terpy embrace arrays. CrystEngComm 11, 1141–1149 (2009)

  32. 32.

    W.-W. Fu, X. Shu, Y.-L. Luo, Z.-Q. Tang, Q. Li, H.-J. Liu, Q.-W. Cheng, H.-Y. Wang, Y. Liu, New Co(II) and Mn(II) complexes with 4′-substituted 2,2′:6′,2″-terpyridine ligands. J. Struct. Chem. 59, 398–410 (2018)

  33. 33.

    Y.H. Lee, E. Kubota, A. Fuyuhiro, S. Kawata, J.M. Harrowfield, Y. Kim, S. Hayami, Synthesis, structure and luminescence properties of Cu(II), Zn(II) and Cd(II) complexes with 4′-terphenylterpyridine. Dalton Trans. 41, 10825–10831 (2012)

  34. 34.

    B.N. Ghosh, F. Topić, P.K. Sahoo, P. Mal, J. Linnera, E. Kalenius, H.M. Tuononen, K. Rissanen, Synthesis, structure and photophysical properties of a highly luminescent terpyridine-diphenylacetylene hybrid fluorophore and its metal complexes. Dalton Trans. 44, 254–267 (2015)

  35. 35.

    S. Naik, S. Kumar, J.T. Mague, M.S. Balakrishna, A hybrid terpyridine-based bis(diphenylphosphino)amine ligand, terpy-C6H4N(PPh2)2: synthesis, coordination chemistry and photoluminescence studies. Dalton Trans. 45, 18434–18437 (2016)

  36. 36.

    W.-W. Fu, F.-X. Zhang, D.-Z. Kuang, Y. Liu, Y.-Q. Yang, Syntheses, crystal structures and luminescence of zinc(II) and cadmium(II) complexes with 4′-substituted 2,2′:6′,2″-terpyridines. J. Coord. Chem. 68, 1177–1188 (2015)

  37. 37.

    W.-W. Fu, Q. Huang, S.T. Liu, W.J. Wu, J.R. Shen, S.H. Li, Syntheses, crystal structures, and luminescence properties of Co(II), Ni(II) and Zn(II) complexes with 4′-(4-(Imidazol-1-Yl)phenyl)-2,2′:6′,2″-terpyridine. Russ. J. Coord. Chem. 43, 670–678 (2017)

  38. 38.

    Y. Komatsu, K. Kato, Y. Yamamoto, H. Kamihata, Y.H. Lee, A. Fuyuhiro, S. Kawata, Spin-crossover behaviors based on intermolecular interactions for cobalt(II) complexes with long alkyl chains. Eur. J. Inorg. Chem. 2012, 2769–2775 (2012)

  39. 39.

    Y. Zhang, K.L.M. Harriman, G. Brunet, A. Pialat, B. Gabidullin, M. Murugesu, Reversible redox, spin crossover, and superexchange coupling in 3d transition-metal complexes of bis-azinyl analogues of 2,2′:6′,2′′-terpyridine. Eur. J. Inorg. Chem. 2018, 1212–1223 (2018)

  40. 40.

    M. Nakaya, R. Ohtani, J.W. Shin, M. Nakamura, L.F. Lindoy, S. Hayami, Abrupt spin transition in a modified-terpyridine cobalt(II) complex with a highly-distorted [CoN6] core. Dalton Trans. 47, 13809–13814 (2018)

  41. 41.

    W.W. Fu, M.S. Chen, W. Li, Y. Liu, F.X. Zhang, D.Z. Kuang, Hydrothermal syntheses, crystal structures, and magnetic properties of three manganese(II) complexes based on 4′-substituted 2,2′:6′,2″-terpyridine ligands. Russ. J. Coord. Chem. 41, 247–254 (2015)

  42. 42.

    V.D. Singh, R.S. Singh, R.P. Paitandi, B.K. Dwivedi, B. Maiti, D.S. Pandey, Solvent-dependent self-assembly and aggregation-induced emission in Zn(II) complexes containing phenothiazine-based terpyridine ligand and its efficacy in pyrophosphate sensing. J. Phys. Chem. C 122, 5178–5187 (2018)

  43. 43.

    A. Sil, A. Maity, D. Giri, S.K. Patra, A phenylene–vinylene terpyridine conjugate fluorescent probe for distinguishing Cd2+ from Zn2+ with high sensitivity and selectivity. Sens. Actuators B 226, 403–411 (2016)

  44. 44.

    K. Czerwińska, B. Machura, S. Kula, S. Krompiec, K. Erfurt, C. Roma-Rodrigues, A.R. Fernandes, L.S. Shulpina, N.S. Ikonnikov, G.B. Shulpin, Copper(II) complexes of functionalized 2,2′:6′,2″-terpyridines and 2,6-di(thiazol-2-yl)pyridine: structure, spectroscopy, cytotoxicity and catalytic activity. Dalton Trans. 46, 9591–9604 (2017)

  45. 45.

    Z. Ma, L. Wei, E.C.B.A. Alegria, L.M.D.R.S. Martins, M.F.C. Guedes, A.J.L. Pombeiro, Synthesis and characterization of copper(II) 4′-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols. Dalton Trans. 43, 4048–4058 (2014)

  46. 46.

    Y.H. Budnikova, D.A. Vicic, A. Klein, Exploring mechanisms in Ni terpyridine catalyzed C–C cross-coupling reactions—a review. Inorganics 6, 18 (2018)

  47. 47.

    D. Zych, A. Slodek, M. Matussek, M. Filapek, G. Szafraniec-Gorol, S. Krompiec, S. Kotowicz, M. Siwy, E. Schab-Balcerzak, K. Bednarczyk, M. Libera, K. Smolarek, S. Maćkowski, W. Danikiewicz, Highly luminescent 4′-(4-ethynylphenyl)-2,2′:6′,2″-terpyridine derivatives as materials for potential applications in organic light emitting diodes. ChemistrySelect 2, 8221–8233 (2017)

  48. 48.

    A. Sil, S.R. Chowdhury, S. Mishra, S.K. Patra, Synthesis, structure, and photophysical and electrochemical properties of Ru(II) complexes of arylene–vinylene terpyridyl conjugates. Dalton Trans. 47, 9877–9888 (2018)

  49. 49.

    U.S. Schubert, H. Hofmeier, G.R. Newkome, Modern Terpyridine Chemistry (Wiley, Weinheim, 2006)

  50. 50.

    Y.-W. Zhong, C.-J. Yao, H.-J. Nie, Electropolymerized films of vinyl-substituted polypyridine complexes: synthesis, characterization, and applications. Coord. Chem. Rev. 257, 1357–1372 (2013)

  51. 51.

    G.I. Dzhardimalieva, I.E. Uflyand, Review: recent advances in the chemistry of metal chelate monomers. J. Coord. Chem. 70, 1468–1527 (2017)

  52. 52.

    G.I. Dzhardimalieva, I.E. Uflyand, Metal chelate monomers as precursors of polymeric materials. J. Inorg. Organomet. Polym Mater. 26, 1112–1173 (2016)

  53. 53.

    G.I. Dzhardimalieva, I.E. Uflyand, Chemistry of Polymeric Metal Chelates (Springer, Cham, 2018)

  54. 54.

    M. Wałęsa-Chorab, A.R. Stefankiewicz, A. Gorczyński, M. Kubicki, J. Kłak, M.J. Korabik, V. Patroniak, Structural, spectroscopic and magnetic properties of new copper(II) complexes with a terpyridine ligand. Polyhedron 30, 233–240 (2011)

  55. 55.

    M. Wałęsa-Chorab, A.R. Stefankiewicz, D. Ciesielski, Z. Hnatejko, M. Kubicki, J. Kłak, M.J. Korabik, V. Patroniak, New mononuclear manganese(II) and zinc(II) complexes with a terpyridine ligand: structural, magnetic and spectroscopic properties. Polyhedron 30, 730–737 (2011)

  56. 56.

    A. Gorczyński, M. Wałęsa-Chorab, M. Kubicki, M. Korabik, V. Patroniak, New complexes of 6,6″-dimethyl-2,2′:6′,2″-terpyridine with Ni(II) ions: synthesis, structure and magnetic properties. Polyhedron 77, 17–23 (2014)

  57. 57.

    W.-W. Fu, J.-R. Shen, Z.-Q. Tang, Y.-Q. Peng, Q. Yi, Synthesis, crystal structure and magnetic property of a Ni(II) complex with 4′-(4-methoxyphenyl)-2,2′:6′,2″-terpyridine. Inorg. Nano-Met. Chem. 47, 1664–1667 (2017)

  58. 58.

    C.-P. Zhang, H. Wang, A. Klein, C. Biewer, K. Stirnat, Y. Yamaguchi, L. Xu, V. Gomez-Benitez, D.A. Vicic, A five-coordinate nickel(II) fluoroalkyl complex as a precursor to a spectroscopically detectable Ni(III) species. J. Am. Chem. Soc. 135, 8141–8144 (2013)

  59. 59.

    E.C. Constable, D. Phillips, P.R. Raithby, Nickel(II) chloride adducts of 4-phenyl-2,2:6,2″-terpyridine. Inorg. Chem. Commun. 5, 519–521 (2002)

  60. 60.

    A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 7, 1349–1356 (1984)

  61. 61.

    Y.T. Jeon, J.Y. Moon, G.H. Lee, J. Park, Y. Chang, Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J. Phys. Chem. B 110, 1187–1191 (2006)

  62. 62.

    A.D. Pomogailo, G.I. Dzhardimalieva, Controlled thermolysis of macromolecule-metal complexes as a way for synthesis of nanocomposites. Macromol. Symp. 317–318, 198–205 (2012)

  63. 63.

    R.G. Chaudhuri, S. Paria, Core/shell nanoparticles. Chem. Rev. 112, 2373–2433 (2012)

  64. 64.

    G.M. Sheldrick, SADABS. Program for Scanning and Correction of Area Detector Data (University of Göttingen, Germany, 2004)

  65. 65.

    G.M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 71, 3–8 (2015)

Download references

Acknowledgements

We are grateful to Dr. Kyrill Y. Suponitsky (A.N. Nesmeyanov Institute of Organoelement Compounds, Moscow) for X-ray study.

Author information

Correspondence to Igor E. Uflyand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uflyand, I.E., Zhinzhilo, V.A. & Dzhardimalieva, G.I. Coordination Polymer Based on Nickel(II) Maleate and 4′-Phenyl-2,2′:6′,2″-Terpyridine: Synthesis, Crystal Structure and Conjugated Thermolysis. J Inorg Organomet Polym 30, 965–975 (2020). https://doi.org/10.1007/s10904-019-01227-8

Download citation

Keywords

  • Coordination polymer
  • Crystal structure
  • Metal chelate
  • Nanomaterial
  • Thermolysis