Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chitosan/Ag-Bentonite Nanocomposites: Preparation, Characterization, Swelling and Biological Properties

  • 75 Accesses

Abstract

In the present work, Chitosan/bentonite, Chitosan/Ag-bentonite and Chitosan/AgNPs-bentonite composite materials were prepared and shaped in form of beads, and characterized using several methods. After that, their thermal stability, swelling properties and antibacterial and antifungal activity were evaluated. In the case of Chitosan/AgNPs-bentonite, the XRD analysis confirms the partial intercalation of chitosan in the interlayer of bentonite and the formation of silver nanoparticles, AgNPs, with an average diameter between 10 and 25 nm. The latter is confirmed by UV–Visible diffuse reflectance spectroscopy by the apparition of the large absorption band at 442 nm. For all prepared materials, the FTIR analysis shows the presence of strong interaction between chitosan reactive groups and bentonite interlayer materials. This result is confirmed by thermal analysis where it is observed that these composite materials exhibit a higher thermal stability than the biopolymer alone. The composite materials present also a very good swelling capacity. Indeed, the swelling rate carried out in water media at pH 7 and a temperature of 30 °C is 160% higher than that of the corresponding dried material. Otherwise, Chitosan/AgNPs-bentonite sample displays a very high antibacteriaPseudomonas aeruginosal activity against pathogen bacteria strains such as Staphylococcus aureus ATCC 25923 and ATCC 27853. This activity is less important for S. aureus ATCC 43300 and no activity is observed for Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Since the starting chitosan and bentonite materials showed no antibacterial or antifungal activity, the antibacterial activity of Chitosan/AgNPs-bentonite sample is attributed to loaded AgNPs species.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    K. Kaviyarasu, N. Geetha, K. Kanimozhi, C.M. Magdalane, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, M. Maaza, In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater. Sci. Eng. C 74, 325–333 (2017)

  2. 2.

    K. Kaviyarasu, K. Kanimozhi, N. Matinise, C.M. Magdalane, G.T. Mola, J. Kennedy, M. Maaza, Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Mater. Sci. Eng. C 76, 1012–1025 (2017)

  3. 3.

    A.M. Amanulla, S.J. Shahina, R. Sundaram, C.M. Magdalane, K. Kaviyarasu, D. Letsholathebe, S. Mohamed, J. Kennedy, M. Maaza, Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4-Co3O4 nanocomposites and its synthesis and characterization. J. Photochem. Photobiol. B 183, 233–241 (2018)

  4. 4.

    C.M. Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, N. Mongwaketsi, D. Letsholathebe, G. Mola, N. AbdullahAl-Dhabi, M.V. Arasu, M. Henini, Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/Visible light induced removal of organic dye from urban wastewater. S. Afr. J. Chem. Eng. 26, 49–60 (2018)

  5. 5.

    C.M. Magdalane, K. Kaviyarasu, A. Raja, M. Arularasu, G.T. Mola, A.B. Isaev, N.A. Al-Dhabi, M.V. Arasu, B. Jeyaraj, J. Kennedy, Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: investigation of cytotoxicity, antibacterial growth inhibition using catalyst. J. Photochem. Photobiol. B 185, 275–282 (2018)

  6. 6.

    Z.A.M. Kebir, A. Mokhtar, M. Adjdir, A. Bengueddach, M. Sassi, Preparation and antibacterial activity of silver nanoparticles intercalated kenyaite materials. Mater. Res. Express 5, 8 (2018)

  7. 7.

    A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 3, 168–171 (2007)

  8. 8.

    S. Magana, P. Quintana, D. Aguilar, J. Toledo, C. Angeles-Chavez, M. Cortes, L. Leon, Y. Freile-Pelegrín, T. Lopez, R.T. Sánchez, Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A 281, 192–199 (2008)

  9. 9.

    G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents. Molecules 20, 8856–8874 (2015)

  10. 10.

    H. Xu, X. Shi, H. Ma, Y. Lv, L. Zhang, Z. Mao, The preparation and antibacterial effects of dopa-cotton/AgNPs. Appl. Surf. Sci. 257, 6799–6803 (2011)

  11. 11.

    G. Xu, X. Qiao, X. Qiu, J. Chen, Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property. J. Mater. Sci. Technol. 27, 685–690 (2011)

  12. 12.

    H.-L. Su, C.-C. Chou, D.-J. Hung, S.-H. Lin, I.-C. Pao, J.-H. Lin, F.-L. Huang, R.-X. Dong, J.-J. Lin, The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30, 5979–5987 (2009)

  13. 13.

    S.K. Pillai, S.S. Ray, M. Scriba, J. Bandyopadhyay, M. Roux-van der Merwe, J. Badenhorst, Microwave assisted green synthesis and characterization of silver/montmorillonite heterostructures with improved antimicrobial properties. Appl. Clay Sci. 83, 315–321 (2013)

  14. 14.

    E. Bennion, L. Sotheby’s, Antique Dental Instruments (Sotheby’s publications, London, 1986)

  15. 15.

    S. Raut, R. Ralegaonkar, S. Mandavgane, Development of sustainable construction material using industrial and agricultural solid waste: a review of waste-create bricks. Constr. Build. Mater. 25, 4037–4042 (2011)

  16. 16.

    J. Sen, P. Prakash, N. De, Nano-clay composite and phyto-nanotechnology: a new horizon to food security issue in Indian agriculture. J. Global Biosci. 4, 2187–2198 (2015)

  17. 17.

    T. Tsoufis, L. Jankovic, D. Gournis, P.N. Trikalitis, T. Bakas, Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures. Mater. Sci. Eng. B 152, 44–49 (2008)

  18. 18.

    R.S. Varma, Clay and clay-supported reagents in organic synthesis. Tetrahedron 58, 1235–1255 (2002)

  19. 19.

    M. Chiban, M. Zerbet, G. Carja, F. Sinan, Application of low-cost adsorbents for arsenic removal: a review. J. Environ. Chem. Ecotoxicol. 4, 91–102 (2012)

  20. 20.

    L.-N. Shi, X. Zhang, Z.-L. Chen, Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 45, 886–892 (2011)

  21. 21.

    S.C. Motshekga, S.S. Ray, M.S. Onyango, M.N. Momba, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 262, 439–446 (2013)

  22. 22.

    D. Bouazza, H. Miloudi, M. Adjdir, A. Tayeb, A. Boos, Competitive adsorption of Cu(II) and Zn(II) on impregnate raw Algerian bentonite and efficiency of extraction. Appl. Clay Sci. 151, 118–123 (2018)

  23. 23.

    Y.S. Reddy, C.M. Magdalane, K. Kaviyarasu, G.T. Mola, J. Kennedy, M. Maaza, Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller’s earth. J. Phys. Chem. Solids 123, 43–51 (2018)

  24. 24.

    F. Bergaya, G. Lagaly, Developments in clay science. Elsevier 5, 1–19 (2013)

  25. 25.

    V.N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, A. Çelik, Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem. Eng. J. 197, 379–386 (2012)

  26. 26.

    A. Bée, L. Obeid, R. Mbolantenaina, M. Welschbillig, D. Talbot, Magnetic chitosan/clay beads: a magsorbent for the removal of cationic dye from water. J. Magn. Magn. Mater. 421, 59–64 (2017)

  27. 27.

    A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: synthetic path and characterization. Int. J. Biol. Macromol. 118, 2149–2155 (2018)

  28. 28.

    Y.-S. Han, S.-H. Lee, K.H. Choi, I. Park, Preparation and characterization of chitosan–clay nanocomposites with antimicrobial activity. J. Phys. Chem. Solids 71, 464–467 (2010)

  29. 29.

    K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. 8, 203 (2006)

  30. 30.

    Y. Liu, Z. Zhong, Extraction of heavy metals, dichromate anions and rare metals by new calixarene-chitosan polymers. J. Inorg. Organomet. Polym. Mater. 28, 962–967 (2018)

  31. 31.

    M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)

  32. 32.

    C. Branca, G. D’Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: a FTIR–ATR study on chitosan and chitosan/clay films. Polymer 99, 614–622 (2016)

  33. 33.

    Z. Cherifi, B. Boukoussa, A. Zaoui, M. Belbachir, R. Meghabar, Structural, morphological and thermal properties of nanocomposites poly (GMA)/clay prepared by ultrasound and in situ polymerization. Ultrason. Sonochem. 48, 188 (2018)

  34. 34.

    B. Liu, J. Luo, X. Wang, J. Lu, H. Deng, R. Sun, Alginate/quaternized carboxymethyl chitosan/clay nanocomposite microspheres: preparation and drug-controlled release behavior. J. Biomater. Sci. Polym. Ed. 24, 589–605 (2013)

  35. 35.

    S. Farhoudian, M. Yadollahi, H. Namazi, Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int. J. Biol. Macromol. 82, 837–843 (2016)

  36. 36.

    M. Zahraoui, A. Mokhtar, M. Adjdir, F. Bennabi, R. Khaled, A. Djelad, A. Bengueddach, M. Sassi, Preparation of Al-magadiite material, copper ions exchange and effect of counter-ions: antibacterial and antifungal applications. Res. Chem. Intermed. 1, 12 (2018)

  37. 37.

    A. Saravanakumar, M. Ganesh, J. Jayaprakash, H.T. Jang, Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J. Ind. Eng. Chem. 28, 277–281 (2015)

  38. 38.

    J. Balavijayalakshmi, V. Ramalakshmi, Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. J. Appl. Res. Technol. 15, 413–422 (2017)

  39. 39.

    T. Kayalvizhi, S. Ravikumar, P. Venkatachalam, Green synthesis of metallic silver nanoparticles using Curculigo orchioides rhizome extracts and evaluation of its antibacterial, larvicidal, and anticancer activity. J. Environ. Eng. 142, C4016002 (2016)

  40. 40.

    C. Paluszkiewicz, M. Holtzer, A. Bobrowski, FTIR analysis of bentonite in moulding sands. J. Mol. Struct. 880, 109–114 (2008)

  41. 41.

    F.G. Alabarse, R.V. Conceição, N.M. Balzaretti, F. Schenato, A.M. Xavier, In-situ FTIR analyses of bentonite under high-pressure. Appl. Clay Sci. 51, 202–208 (2011)

  42. 42.

    H. Moussout, H. Ahlafi, M. Aazza, O. Zegaoui, C. El Akili, Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5% bentonite/chitosan. Water Sci. Technol. 73, 2199–2210 (2016)

  43. 43.

    A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Biopolymer-layered polysilicate micro/nanocomposite based on chitosan intercalated in magadiite. Res. Chem. Intermed. 1, 10 (2018)

  44. 44.

    F.G. Torres, J. Arroyo, R. Alvarez, S. Rodriguez, O. Troncoso, D. López, Molecular dynamics of carboxymethyl κ/ι-hybrid carrageenan films doped with NH4I. Polym.-Plast. Technol. Eng. 1, 14 (2018)

  45. 45.

    A.R. Nesic, S.J. Velickovic, D.G. Antonovic, Characterization of chitosan/montmorillonite membranes as adsorbents for bezactiv orange V-3R dye. J. Hazard. Mater. 209, 256–263 (2012)

  46. 46.

    A. Mokhtar, A. Djelad, A. Bengueddach, M. Sassi, Structural and antibacterial properties of HyZnxNa2−xSi14O29nH2O layered silicate compounds, prepared by ion-exchange reaction. J. Inorg. Organomet. Polym. Mater. 1, 10 (2019)

  47. 47.

    J.P. Montañez, S. Gómez, A.N. Santiago, L.B. Pierella, TiO2 supported on HZSM-11 zeolite as efficient catalyst for the photodegradation of chlorobenzoic acids. J. Braz. Chem. Soc. 26, 1191–1200 (2015)

  48. 48.

    S.A. Babu, H.G. Prabu, Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. Mater. Lett. 65, 1675–1677 (2011)

  49. 49.

    M. Zahran, H.B. Ahmed, M. El-Rafie, Alginate mediate for synthesis controllable sized AgNPs. Carbohyd. Polym. 111, 10–17 (2014)

  50. 50.

    H. Moussout, H. Ahlafi, M. Aazza, A. Amechrouq, Bentonite/chitosan nanocomposite: preparation, characterization and kinetic study of its thermal degradation. Thermochim. Acta 659, 191–202 (2018)

  51. 51.

    A. Mokhtar, Z.A.K. Medjhouda, A. Djelad, A. Boudia, A. Bengueddach, M. Sassi, Structure and intercalation behavior of copperII on the layered sodium silicate magadiite material. Chem. Pap. 72, 39–50 (2018)

  52. 52.

    X. Wang, Y. Du, J. Yang, X. Wang, X. Shi, Y. Hu, Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer 47, 6738–6744 (2006)

  53. 53.

    K. Gupta, M.R. Kumar, Drug release behavior of beads and microgranules of chitosan. Biomaterials 21, 1115–1119 (2000)

  54. 54.

    G. Pasparakis, N. Bouropoulos, Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int. J. Pharm. 323, 34–42 (2006)

  55. 55.

    Q. Wang, X. Xie, X. Zhang, J. Zhang, A. Wang, Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int. J. Biol. Macromol. 46, 356–362 (2010)

  56. 56.

    S. Ravindra, Y.M. Mohan, N.N. Reddy, K.M. Raju, Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Coll. Surf. A 367, 31–40 (2010)

  57. 57.

    J.S. Gabriel, V.A. Gonzaga, A.L. Poli, C.C. Schmitt, Photochemical synthesis of silver nanoparticles on chitosans/montmorillonite nanocomposite films and antibacterial activity. Carbohyd. Polym. 171, 202–210 (2017)

  58. 58.

    L.F. Giraldo, P. Camilo, T. Kyu, Incorporation of silver in montmorillonite-type phyllosilicates as potential antibacterial material. Curr. Opin. Chem. Eng. 11, 7–13 (2016)

  59. 59.

    K. Shameli, M.B. Ahmad, W.M.Z.W. Yunus, N.A. Ibrahim, R.A. Rahman, M. Jokar, M. Darroudi, Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int. J. Nanomed. 5, 573 (2010)

  60. 60.

    K. Shameli, M.B. Ahmad, W.M.Z.W. Yunus, A. Rustaiyan, N.A. Ibrahim, M. Zargar, Y. Abdollahi, Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int. J. Nanomed. 5, 875 (2010)

  61. 61.

    K. Shameli, M.B. Ahmad, M. Zargar, W.M.Z.W. Yunus, N.A. Ibrahim, Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int. J. Nanomed. 6, 331 (2011)

  62. 62.

    Z.A.M. Kebir, M. Adel, M. Adjdir, A. Bengueddach, M. Sassi, Preparation and antibacterial activity of silver nanoparticles intercalated kenyaite materials. Mater. Res. Express 5, 085021 (2018)

  63. 63.

    S.K. Jou, N.A.N.N. Malek, Characterization and antibacterial activity of chlorhexidine loaded silver-kaolinite. Appl. Clay Sci. 127, 1–9 (2016)

  64. 64.

    Y. Zhang, Y. Chen, H. Zhang, B. Zhang, J. Liu, Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J. Inorg. Biochem. 118, 59–64 (2013)

Download references

Author information

Correspondence to Adel Mokhtar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdelkrim, S., Mokhtar, A., Djelad, A. et al. Chitosan/Ag-Bentonite Nanocomposites: Preparation, Characterization, Swelling and Biological Properties. J Inorg Organomet Polym 30, 831–840 (2020). https://doi.org/10.1007/s10904-019-01219-8

Download citation

Keywords

  • Chitosan
  • Bentonite
  • Silver nanoparticles
  • Chemical reduction
  • Swelling
  • Antimicrobial activities