Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Synthesis and Characterization of CdTiO3@S Composite: Investigation of Photocatalytic Activity for the Degradation of Crystal Violet Under Sun Light

  • 39 Accesses

Abstract

CdTiO3 was synthesized by hydrothermal method at low temperature of 180 °C for 24 h. CdTiO3@S composite with plate-like morphology was synthesized by mixing CdTiO3 and S powder under post-annealing at 600 °C for 2 h. The as-synthesized samples were investigated by techniques XRD, FE-SEM, EDS, TEM, FT-IR, TG-DSC, BET. The results showed that the synthesized of CdTiO3@S composite has led to the creation of defects and skew deviations in crystalline lattice. Optical properties and photocatalytic activity were studied using DRS and UV–Vis spectrophotometer. UV–Vis DRS indicated absorption peaks extended towards visible region. Band gap energy values were determined by Tauc plot for direct transitions which the values of 3.28 eV and 2.75 eV were obtained for CdTiO3 and CdTiO3@S respectively. Photocatalyst performance of CdTiO3 and CdTiO3@S were carried out for the degradation of crystal violet (CV) under natural sunlight. The results showed that the degradation efficiency of CdTiO3@S composite (99%) was better than that of pure CdTiO3 (35%), which is due to the presence of narrow band gap energy of CdTiO3@S. The effect of examining different photocatalytic parameters indicated that, photocatalytic activity of CdTiO3@S composite increases with decreasing CV dye concentration, increasing the photocatalyst dosage and in acidic pH. Kinetics studies have shown that the degradation of CV by the as-synthesized of photocatalysts follows the pseudo-first-order kinetics and the rate constant achieved for CdTiO3@S (k = 76.10−4 min−1) was much greater than of CdTiO3 (k = 4.10−4 min−1).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    G. Sharma, B. Thakur, M. Naushad, H. Alaa, A. Kumar, M. Sillanpaa, G.T. Mola, Fabrication and characterization of sodium dodecyl sulphate@ ironsilicophosphate nanocomposite: Ion exchange properties and selectivity for binary metal ions. Mater. Chem. Phys. 193, 129–139 (2017)

  2. 2.

    G. Sharma, A. Kumar, K. Devi, S. Sharma, M. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Guar gum-crosslinked-Soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. Int. J. Biol. Macromol. 114, 295–305 (2018)

  3. 3.

    N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242–12258 (2012)

  4. 4.

    A. Kumar, A. Kumar, G. Sharma, M. Naushad, R.C. Veses, A.A. Ghfar, F.J. Stadler, M.R. Khan, Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO 2 conversion using sustainable coal-char/polymeric-gC 3 N 4/RGO metal-free nano-hybrids. New J. Chem. 41, 10208–10224 (2017)

  5. 5.

    Y. Li, W. Zhang, L. Li, C. Yi, H. Lv, Q. Song, Litchi-like CdS/CdTiO 3–TiO 2 composite: synthesis and enhanced photocatalytic performance for crystal violet degradation and hydrogen production. RSC Adv. 6, 51374–51386 (2016)

  6. 6.

    K.M. Lee, S.B.A. Hamid, C.W. Lai, Mechanism and kinetics study for photocatalytic oxidation degradation: a case study for phenoxyacetic acid organic pollutant. J. Nanomater. 2015, 9 (2015)

  7. 7.

    F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli, M. Curri, A. Agostiano, R. Comparelli, Nanocomposite materials for photocatalytic degradation of pollutants. Catal. Today 281, 85–100 (2017)

  8. 8.

    R. Talebi, Novel silver-doped cadmium titanate: synthesis, characterization, and its photovoltaic application. J. Mater. Sci.: Mater. Electron. 27, 6359–6363 (2016)

  9. 9.

    M.-N.T. Tran, H.-Y.T. Quach, Q.V. Nguyen, T.-D. Nguyen, D.-T. On, Synthesis of perovskite-based nanocomposites for deNO x catalytic activity. Can. J. Chem. 94, 215–220 (2015)

  10. 10.

    S. Sivakumar, A. Selvaraj, A.K. Ramasamy, Photocatalytic degradation of organic reactive dyes over MnTiO3/TiO2 heterojunction composites under UV-Visible irradiation. Photochem. Photobiol. 89, 1047–1056 (2013)

  11. 11.

    M. Bradha, T. Vijayaraghavan, S. Suriyaraj, R. Selvakumar, A.M. Ashok, Synthesis of photocatalytic La (1–x) AxTiO3. 5–δ (A = Ba, Sr, Ca) nano perovskites and their application for photocatalytic oxidation of congo red dye in aqueous solution. J. Rare Earths 33, 160–167 (2015)

  12. 12.

    A. Bumajdad, M. Madkour, Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys. Chem. Chem. Phys. 16, 7146–7158 (2014)

  13. 13.

    G. Sharma, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J. Photochem. Photobiol., A 347, 235–243 (2017)

  14. 14.

    G. Sharma, A. Kumar, M. Naushad, A. Kumar, H. Ala’a, P. Dhiman, A.A. Ghfar, F.J. Stadler, M. Khan, Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites. J. Clean. Prod. 172, 2919–2930 (2018)

  15. 15.

    G. Sharma, V.K. Gupta, S. Agarwal, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, Fabrication and characterization of trimetallic nano-photocatalyst for remediation of ampicillin antibiotic. J. Mol. Liq. 260, 342–350 (2018)

  16. 16.

    H. He, W. Dong, G. Zhang, Photodegradation of aqueous methyl orange on MnTiO 3 powder at different initial pH. Res. Chem. Intermed. 36, 995–1001 (2010)

  17. 17.

    J. Cao, X. Huang, Y. Liu, J. Wu, Y. Ji, Enhanced photocatalytic activity of SrTiO3 photocatalyst by topotactic preparation. Mater Res Express 3, 115903 (2016)

  18. 18.

    S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 51, 42–47 (2016)

  19. 19.

    S. Liu, Y. Qu, R. Li, G. Wang, Y. Li, Photocatalytic activity of MTiO 3 (M = Ca, Ni, and Zn) nanocrystals for water decomposition to hydrogen. J. Mater. Res. 29, 1295–1301 (2014)

  20. 20.

    T. Baran, S. Wojtyła, A. Vertova, A. Minguzzi, S. Rondinini, Photoelectrochemical and photocatalytic systems based on titanates for hydrogen peroxide formation. J. Electroanal. Chem. 808, 395–402 (2018)

  21. 21.

    A. Phani, S. Santucci, Microwave irradiation as an alternative source for conventional annealing: a study of pure TiO2, NiTiO3, CdTiO3 thin films by a sol–gel process for electronic applications. J. Phys. 18, 6965 (2006)

  22. 22.

    C. Karunakaran, A. Vijayabalan, Electrical and optical properties of polyethylene glycol-assisted sol–gel solid state reaction-synthesized nanostructured CdTiO3. Mater. Sci. Semicond. Process. 16, 1992–1996 (2013)

  23. 23.

    P. Dhivya, A.K. Prasad, M. Sridharan, Nanostructured perovskite CdTiO3 films for methane sensing. Sens. Actuators, B 222, 987–993 (2016)

  24. 24.

    S. Rahnamaeiyan, S. Khademolhoseini, Preparation and characterization of cadmium titanate nanoparticles via novel sol–gel method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 6043–6047 (2016)

  25. 25.

    M.A. Ehsan, H. Khaledi, A. Pandikumar, N.M. Huang, Z. Arifin, M. Mazhar, Dye sensitized solar cell applications of CdTiO 3–TiO 2 composite thin films deposited from single molecular complex. J. Solid State Chem. 230, 155–162 (2015)

  26. 26.

    Z. Imran, M. Rafiq, M. Ahmad, K. Rasool, S. Batool, M. Hasan, Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Adv. 3, 032146 (2013)

  27. 27.

    S. Mayén-Hernández, J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Pérez, J. Márquez-Marín, J. Mendoza-Alvarez, O. Zelaya-Angel, CdTiO3 thin films prepared by sol–gel method using a simpler route. Surf. Coat. Technol. 200, 3567–3572 (2006)

  28. 28.

    L.Y. Yang, G.P. Feng, T.X. Wang, J.M. Zhang, T.J. Lou, Low temperature preparation and characterization of CdTiO3 nanoplates. Mater. Lett. 65, 2601–2603 (2011)

  29. 29.

    T. Acharya, R. Choudhary, Development of ilmenite-type electronic material CdTi0 3 for devices. IEEE Trans. Dielectr. Electr. Insul. 22, 3521–3528 (2015)

  30. 30.

    R. Bahloul, S. Sayouri, K. Limame, M.M. Yahyaoui, B. Jaber, L. Laanab, Temperature effect on the structural and the optical properties of sol gel CdTiO3 nanopowders. J. Ceram. Process. Res. 18, 329–335 (2017)

  31. 31.

    M. Kharkwal, S. Uma, R. Nagarajan, Synthesis and optical properties of pure CdTiO 3 and Ni 2 + and Zn 2 + ion substituted CdTiO 3 obtained by a novel precursor route. Indian J. Chem. A 51(11), 1538–1544 (2012)

  32. 32.

    S. Fareed, A. Jamil, M. Rafiq, F. Sher, Zinc modified cadmium titanite nanoparticles: electrical and room temperature methanol sensing properties. Ceram. Int. 44, 4751–4757 (2018)

  33. 33.

    S. Piskunov, O. Lisovski, J. Begens, D. Bocharov, Y.F. Zhukovskii, M. Wessel, E. Spohr, C-, N-, S-, and Fe-doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: prediction from first principles. J. Phys. Chem. C 119, 18686–18696 (2015)

  34. 34.

    F.-F. Li, D.-R. Liu, G.-M. Gao, B. Xue, Y.-S. Jiang, Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping. Appl. Catal. B 166, 104–111 (2015)

  35. 35.

    D.-R. Liu, Y.-S. Jiang, G.-M. Gao, Photocatalytic degradation of an azo dye using N-doped NaTaO3 synthesized by one-step hydrothermal process. Chemosphere 83, 1546–1552 (2011)

  36. 36.

    P.C. Huynh, V.M. Le, Adsorptive and photocatalytic properties of S-doped SrTiO3 under simulated solar irradiation. In AIP Conference Proceedings, vol. 1878 (AIP Publishing, 2017), p. 020012)

  37. 37.

    Z.H. Shah, Y. Ge, X. Lin, J. Xiu, S. Zhang, R. Lu, Chloride capping of CdTiO 3 for higher crystallinity and enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 18, 1637–1643 (2016)

  38. 38.

    M.R. Gholipour, C.-T. Dinh, F. Béland, T.-O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7, 8187–8208 (2015)

  39. 39.

    M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Simple morphology-controlled fabrication of CdTiO 3 nanoparticles with the aid of different capping agents. J. Mater. Sci.: Mater. Electron. 27, 13294–13299 (2016)

  40. 40.

    A. Tadjarodi, H. Kerdari, M. Imani, Synthesis, characterization and adsorption capability of CdO microstructure for congo red from aqueous solution. J. Nanostruct. 2, 9–17 (2012)

  41. 41.

    M.A. Habib, M. Muslim, M.T. Shahadat, M.N. Islam, I.M.I. Ismail, T.S.A. Islam, A.J. Mahmood, Photocatalytic decolorization of crystal violet in aqueous nano-ZnO suspension under visible light irradiation. J. Nanostruct. Chem. 3, 70 (2013)

  42. 42.

    S.J. Darzi, A. Mahjoub, S. Sarfi, Visible-light-active nitrogen doped TiO2 nanoparticles prepared by sol–gel acid catalyzed reaction. Iran. J. Mater. Sci. Eng. 9, 17–23 (2012)

  43. 43.

    Y.V. Kabirov, B. Kulbuzhev, M. Kupriyanov, Structure formation and phase transitions in cadmium titanate. J. Struct. Chem. 42, 815–819 (2001)

  44. 44.

    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO 3 nanoparticles by Pechini sol–gel method. J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)

  45. 45.

    M.S. Hassan, T. Amna, M.-S. Khil, Synthesis of high aspect ratio CdTiO3 nanofibers via electrospinning: characterization and photocatalytic activity. Ceram. Int. 40, 423–427 (2014)

  46. 46.

    H. Wang, X. Zhang, A. Huang, H. Xu, M. Zhu, B. Wang, H. Yan, M. Yoshimura, A new phase of cadmium titanate by hydrothermal method. J. Cryst. Growth 246, 150–154 (2002)

  47. 47.

    X. Zhang, H. Wang, A. Huang, H. Xu, Y. Zhang, D. Yu, B. Wang, H. Yan, Synthesis of cadmium titanate powders by a sol-gel-hydrothermal method. J. Mater. Sci. 38, 2353–2356 (2003)

  48. 48.

    Y.K. Sharma, M. Kharkwal, S. Uma, R. Nagarajan, Synthesis and characterization of titanates of the formula MTiO3 (M = Mn, Fe Co, Ni and Cd) by co-precipitation of mixed metal oxalates. Polyhedron 28, 579–585 (2009)

  49. 49.

    S. Chauhan, M. Arora, P. Sati, S. Chhoker, S. Katyal, M. Kumar, Structural, vibrational, optical, magnetic and dielectric properties of Bi1 − xBaxFeO3 nanoparticles. Ceram. Int. 39, 6399–6405 (2013)

  50. 50.

    X. Hui-min, D. Yi-quan, Z. Jiang, C. Xi, Structural, magnetic and optical properties of BiFe 1-x Nb x O 3. Chin. J. Chem. Phys. 29, 578–584 (2016)

  51. 51.

    H. Hayashi, Y. Hakuta, Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3, 3794–3817 (2010)

  52. 52.

    M. Marefati, M. Mehrpooya, M.B. Shafii, Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids. J. Clean. Prod. 175, 294–313 (2018)

  53. 53.

    L. Fayoumi, M. Ezzedine, H. Akel, M. El Jamal, Kinetic study of the degradation of crystal violet by K2S2O8. Comparison with malachite green. Port. Electrochim. Acta 30, 121–133 (2012)

  54. 54.

    J.-Z. Kong, A.-D. Li, H.-F. Zhai, H. Li, Q.-Y. Yan, J. Ma, D. Wu, Preparation, characterization and photocatalytic properties of ZnTiO3 powders. J. Hazard. Mater. 171, 918–923 (2009)

  55. 55.

    C. Manjunatha, B. Nagabhushana, H. Nagabhushana, R. Chakradhar, Transformation of hydrothermally derived nanowire cluster intermediates into CdSiO 3 nanobelts. J. Mater. Chem. 22, 22392–22397 (2012)

  56. 56.

    F. Wang, F. Li, L. Zhang, H. Zeng, Y. Sun, S. Zhang, X. Xu, S-TiO2 with enhanced visible-light photocatalytic activity derived from TiS2 in deionized water. Mater. Res. Bull. 87, 20–26 (2017)

  57. 57.

    R. Ashiri, Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vib. Spectrosc. 66, 24–29 (2013)

  58. 58.

    S.-H. Nam, T.K. Kim, J.-H. Boo, Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light. Catal. Today 185, 259–262 (2012)

  59. 59.

    J. Gardy, A. Hassanpour, X. Lai, M.H. Ahmed, Synthesis of Ti (SO4) O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl. Catal. A 527, 81–95 (2016)

  60. 60.

    S. Kumar, J. Sharma, Stable phase CdS nanoparticles for optoelectronics: a study on surface morphology, structural and optical characterization. Mater. Sci. Pol. 34, 368–373 (2016)

  61. 61.

    R. Karthik, J.V. Kumar, S.-M. Chen, P.S. Kumar, V. Selvam, V. Muthuraj, A selective electrochemical sensor for caffeic acid and photocatalyst for metronidazole drug pollutant-A dual role by rod-like SrV 2 O 6. Sci. Rep. 7, 7254 (2017)

  62. 62.

    A. Schleife, P. Rinke, F. Bechstedt, C.G. Van de Walle, Enhanced optical absorption due to symmetry breaking in TiO2 (1–x) S2 x alloys. J. Phys. Chem. C 117, 4189–4193 (2013)

  63. 63.

    K.H. Abass, Fe2O3 thin films prepared by spray pyrolysis technique and study the annealing on its optical properties. Int. Lett. Chem. Phys. Astron. 6, 24–31 (2015)

  64. 64.

    I. Ali, A. Iqbal, A. Mahmood, A. Shah, M. Zakria, A. Ali, Optical spectroscopic analysis of annealed Cd1 − xZnxSe thin films deposited by close space sublimation technique. Mater. Sci. Pol. 34, 828–833 (2016)

  65. 65.

    B. Lokesh, N.M. Rao, Effect of Cu-doping on structural, optical and photoluminescence properties of zinc titanates synthesized by solid state reaction. J. Mater. Sci.: Mater. Electron. 27, 4253–4258 (2016)

  66. 66.

    S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, Chalcogenide perovskites–an emerging class of ionic semiconductors. Nano Energy 22, 129–135 (2016)

  67. 67.

    A. Kumar, G. Pandey, A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 1, 106–114 (2017)

  68. 68.

    A. Tadjarodi, M. Imani, H. Kerdari, K. Bijanzad, D. Khaledi, M. Rad, Preparation of CdO rhombus-like nanostructure and its photocatalytic degradation of azo dyes from aqueous solution. Nanomater. Nanotechnol. 4, 4–16 (2014)

  69. 69.

    H. Atout, A. Bouguettoucha, D. Chebli, J. Gatica, H. Vidal, M.P. Yeste, A. Amrane, Integration of adsorption and photocatalytic degradation of methylene blue using $$\hbox TiO _ 2 $$ supported on granular activated carbon. Arab. J. Sci. Eng. 42, 1475–1486 (2017)

  70. 70.

    Y. Miyah, A. Lahrichi, M. Idrissi, K. Anis, R. Kachkoul, N. Idrissi, S. Lairini, V. Nenov, F. Zerrouq, Removal of cationic dye “crystal violet” in aqueous solution by the local clay. J. Mater. Environ. Sci. 8, 3570–3582 (2017)

  71. 71.

    P. Vaziri, M. Navasery, A. Abedini, G. Bahmanrokh, M. Erfani, M.Z. Hussein, E. Saion, N. Soltani, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242–12258 (2012)

  72. 72.

    X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 143 (2017)

  73. 73.

    J.M. Berg, A. Romoser, N. Banerjee, R. Zebda, C.M. Sayes, The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 3, 276–283 (2009)

  74. 74.

    J.D. Clogston, A.K. Patri, Zeta potential measurement. Methods Mol. Biol. 697, 63–70 (2011)

  75. 75.

    S. Bhattacharjee, DLS and zeta potential–what they are and what they are not? J. Control. Release 235, 337–351 (2016)

  76. 76.

    M.G. Carneiro-da-Cunha, M.A. Cerqueira, B.W. Souza, J.A. Teixeira, A.A. Vicente, Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr. Polym. 85, 522–528 (2011)

  77. 77.

    M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto, Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys. Chem. Chem. Phys. 6, 865–870 (2004)

  78. 78.

    L. Zhang, H. Jia, C. Liu, M. Liu, Q. Meng, W. He, Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters. J. Environ. Sci. Health C 37, 1–13 (2019)

  79. 79.

    Y. Xu, M.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)

  80. 80.

    Z.-M. Yang, G.-F. Huang, W.-Q. Huang, J.-M. Wei, X.-G. Yan, Y.-Y. Liu, C. Jiao, Z. Wan, A. Pan, Novel Ag3 PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. J. Mater. Chem. A 2, 1750–1756 (2014)

  81. 81.

    R. Saravanan, S. Joicy, V. Gupta, V. Narayanan, A. Stephen, Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C 33, 4725–4731 (2013)

  82. 82.

    R. Beranek, Photo electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv. Phys. Chem. 2011, 2 (2011). https://doi.org/10.1155/2011/786759

Download references

Author information

Correspondence to Ali Reza Mahjoub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tavakoli-Azar, T., Mahjoub, A., Seyed Sadjadi, M. et al. Synthesis and Characterization of CdTiO3@S Composite: Investigation of Photocatalytic Activity for the Degradation of Crystal Violet Under Sun Light. J Inorg Organomet Polym 30, 667–683 (2020). https://doi.org/10.1007/s10904-019-01218-9

Download citation

Keywords

  • CdTiO3@S
  • Crystal violet
  • Photocatalyst
  • Hydrothermal
  • Degradation
  • Sunlight