A New One Dimensional Mn(III) Coordination Polymer Constructed by a Salicylamide Imine Multidentate Ligand: Structure, Magnetic and Luminescent Properties

  • Huan-Huan Meng
  • Xue-Li Xia
  • Zen-Gang Lin
  • Xue-Qin SongEmail author


A new Mn(III) coordination polymer, [MnL]n, based on a salicylamide imine multidentate ligand, 1-(2-hydroxy-benzamido)-2-(2-hydroxy-5-nitrobenzylideneamino)-ethane (H3L) was prepared. Single crystal analysis revealed that the title compound was a herringbone like Mn(III) coordination polymer where deprotonated ligand L3– acted as a pentadentate ligand with amide group being bridge to connect two Mn(III) centres. Magnetic susceptibilities indicates that [MnL]n exhibits an antiferromagnetic coupling with a long-range canted antiferromagnetic ordering and metamagnetic behavior at low temperatures. And the photophysical determination shows that [MnL]n also displays strong long life red luminescence. The results presented herein indicates [MnL]n appears to be an excellent candidate for multifunctional material as a result of its high thermal stability, interesting magnetic and luminescent properties.


Salicylamide imine multidentate ligand Mn(III) coordination polymer Magnetic properties Luminescent properties 



This work was supported by the National Natural Science Foundation of China (Grants 21661019).


  1. 1.
    S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application, 2009Google Scholar
  2. 2.
    Y. Wang, D.A.A.S. AbdElAziz, Chem. Soc. Rev. 48, 558–636 (2019)CrossRefGoogle Scholar
  3. 3.
    Y.J. Cui, J. Zhang, H.J. He, G.D. Qian, Chem. Soc. Rev. 47, 5740–5785 (2018)CrossRefGoogle Scholar
  4. 4.
    A. Abdallah, S. Freslon, X. Fan, A. Rojo, C. Daiguebonne, Y. Suffren, K. Bernot, G. Calvez, T. Roisnel, O. Guillou, Inorg. Chem. 58, 462–475 (2019)CrossRefGoogle Scholar
  5. 5.
    X.-Q. Song, M. Zhang, C.-Y. Wang, A.A.A. Shamshoom, H.-H. Meng, W. Xi, J. Lumin. 210, 410–418 (2018)CrossRefGoogle Scholar
  6. 6.
    W.-K. Dong, J.-C. Ma, L.-C. Zhu, Y. Zhang, New J. Chem. 40, 6998–7010 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Bai, C.-T. Li, H.-M. Hu, B. Liu, J.-D. Li, G.L. Xue, Dalton Trans. 48, 814–817 (2019)CrossRefGoogle Scholar
  8. 8.
    K. Bernot, J. Luzon, R. Sessoli, A. Vindigni, J. Thion, S. Richeter, D. Leclercq, J. Larionova A. Van der Lee, J. Am. Chem. Soc. 130, 1619–1626 (2008)Google Scholar
  9. 9.
    X.Q. Song, X.Y. Zhou, W.S. Liu, W. Dou, J.X. Ma, X.L. Tang, J.R. Zheng, Inorg. Chem. 47, 11501–11513 (2008)CrossRefGoogle Scholar
  10. 10.
    T.-T. Wang, M. Ren, S.-S. Bao, B. Liu, L. Pi, Z.-S. Cai, Z.-H. Zheng, Z.-L. Xu, L.-M. Zheng, Inorg. Chem. 53, 3117–3125 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Erxleben, Coord. Chem. Rev. 246, 203–228 (2003)CrossRefGoogle Scholar
  12. 12.
    D.-D. Tao, Q. Wang, X.-S. Yan, N. Chen, Z. Lia, Y.-B. Jiang, Chem. Commun. 53, 255–258 (2017)CrossRefGoogle Scholar
  13. 13.
    A.L. Pochodylo, R.L. LaDuca, CrystEngComm 13, 2249–2261 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Song, R. Fan, P. Wang, X. Wang, S. Gao, X. Du, Y. Yang, T. Luan, J. Mater. Chem. C 3, 6249–6259 (2015)CrossRefGoogle Scholar
  15. 15.
    X.T. Han, G.Z. Huang, C. Li, Y.C. Wu, C. Wang, K.S. Shen, Y. Qu, K. Zhao, H.L. Wu, J. Lumin. 208, 453–462 (2019)CrossRefGoogle Scholar
  16. 16.
    C.-L. Ho, Z.-Q. Yu, W.Y. Wong, Chem. Soc. Rev. 45, 5264–5295 (2016)CrossRefGoogle Scholar
  17. 17.
    O. Drath, C. Boskovic, Coord. Chem. Rev. 375, 256–266 (2018)CrossRefGoogle Scholar
  18. 18.
    T.J. Greenfield, M. Julve, R.P. Doyle, Coord. Chem. Rev. 384, 37–64 (2019)CrossRefGoogle Scholar
  19. 19.
    J. Weihermüller, S. Schlamp, W. Milius, F. Puchtler, J. Breu, P. Ramming, S. Hüttner, S. Agarwal, C. Göbel, M. Hund, G. Papastavroue, B. Webe, J. Mater. Chem. C 7, 1151–1163 (2019)CrossRefGoogle Scholar
  20. 20.
    Z. Tomkowicz, M. Rams, M. Bałanda, S. Foro, H. Nojiri, Y. Krupskaya, V. Kataev, B. Büchner, S.K. Nayak, J.V. Yakhmi, W. Haase, Inorg. Chem. 51, 9983–9994 (2012)CrossRefGoogle Scholar
  21. 21.
    Kuheli Das, Amitabha Datta, Belete B. Beyene, Chiara Massera, Shinnosuke Tanka, Polyhedron 127, 315–322 (2017)CrossRefGoogle Scholar
  22. 22.
    J.H. Song, K.S. Lim, D.W. Ryu, S.W. Yoon, B.J. Suh, C.S. Hong, Inorg. Chem. 53, 7936–7940 (2014)CrossRefGoogle Scholar
  23. 23.
    F.A. Mautner, C. Berger, R.C. Fischer, S.S. Massoud, R. Vicente, Polyhedron 134, 126–134 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Bhargavi, M.V. Rajasekharan, J.-P. Costesbc, J.-P. Tuchagues, Dalton Trans. 42, 8113–8123 (2013)CrossRefGoogle Scholar
  25. 25.
    G. -M. Zhuang, X. -B. Li, Y.-Q. Wen, C. -Y. Tian, E. -Q. Gao, Eur. J. Inorg. Chem. 3488–3496 (2014)Google Scholar
  26. 26.
    X.-Q. Song, P.-P. Liu, Z.-R. Xiao, X. Li, Y.-A. Liu, Inorg. Chim. Acta 438, 232–244 (2015)CrossRefGoogle Scholar
  27. 27.
    X.-Q. Song, P.-P. Liu, Y.-A. Liu, J.-J. Zhou, X.-L. Wang, Dalton Trans. 45, 8154–8163 (2016)CrossRefGoogle Scholar
  28. 28.
    X.-Q. Song, P.-P. Liu, C.-Y. Wang, Y.-A. Liu, W.-S. Liu, M. Zhang, RSC Adv. 7, 22692–22698 (2017)CrossRefGoogle Scholar
  29. 29.
    Y.-A. Liu, C.-Y. Wang, M. Zhang, X.-Q. Song, Polyhedron 127, 278–286 (2017)CrossRefGoogle Scholar
  30. 30.
    P.-P. Liu, C.-Y. Wang, M. Zhang, X.-Q. Song, W.-S. Liu, M. Zhang, Polyhedron 129, 133–140 (2017)CrossRefGoogle Scholar
  31. 31.
    X.-Q. Song, C.-Y. Wang, H.-H. Meng, A.A.A. Shamshoom, W.-S. Liu, Inorg. Chem. 57, 10873–10880 (2018)CrossRefGoogle Scholar
  32. 32.
    L. Wang, C. Xu, Q. Han, X. Tang, P. Zhou, R. Zhang, G. Gao, B. Xu, W. Qin, W. Liu, Chem. Commun. 54, 2212–2215 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Wang, R. Zhang, Q. Han, C. Xu, W. Chen, H. Yang, G. Gao, W. Qin, W. Liu, Green Chem. 20, 5311–5317 (2018)CrossRefGoogle Scholar
  34. 34.
    J.-P. Costes, F. Dahan, B. Donnadieu, M.-J.R. Douton, M.-I.F. Garcia, A. Bousseksou, J.-P. Tuchagues, Inorg. Chem. 43, 2736–2743 (2004)CrossRefGoogle Scholar
  35. 35.
    M. R. Bermejo, A. M. Gonzalez-Noya, V. Abad, M. I. Fernandez, M. Maneiro, R. Pedrido, M. Vazquez, Eur. J. Inorg. Chem. 3696–3674 (2004)Google Scholar
  36. 36.
    H.-Z. Kou, Y.-T. Wang, W.-X. Luo, Q.-W. Xie, J. Tao, A.-L. Cui, D.-Z. Shen, Cryst. Grow. Des. 8, 3908–3910 (2008)CrossRefGoogle Scholar
  37. 37.
    P.-P. Liu, L. Sheng, X.-Q. Song, W.-Y. Xu, Y.-A. Liu, Inorg. Chim. Acta 434, 252–257 (2015)CrossRefGoogle Scholar
  38. 38.
    X.-Q. Song, P.-P. Liu, Z.-R. Xiao, X. Li, Y.-A. Liu, Inorg. Chim. Acta 438, 232–244 (2015)CrossRefGoogle Scholar
  39. 39.
    J.-J. Zhou, X.-Q. Song, Y.-A. Liu, X.-L. Wang, RSC Adv. 7, 25549–25559 (2017)CrossRefGoogle Scholar
  40. 40.
    SAINT-Plus, version 6.02; Bruker Analytical X-ray System: Madison, WI, (1999)Google Scholar
  41. 41.
    G.M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Determination (University of Göttingen, Göttingen, 1997)Google Scholar
  42. 42.
    G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution and Refinement (University of Göttingen, Göttingen, 1997)Google Scholar
  43. 43.
    K. Brandenburg, in Diamond (Version 3.2), Crystal and Molecular Structure Visualization, ed. K. Brandenburg, H. Putz. Gbr Crystal Impact, (Bonn, Germany, 2009).
  44. 44.
    M. Hołyńska, R. Clérac, S. Dehnen, Eur. J. Inorg. Chem. 5500–5508 (2012)Google Scholar
  45. 45.
    S. Naiya, S. Biswas, M.G.B. Drew, C.J. Gómez-García, A. Ghosh, Inorg. Chem. 51, 5332–5341 (2012)CrossRefGoogle Scholar
  46. 46.
    P. Kar, P. M. Guha, M. G. B. Drew, T. Ishida, A. Ghosh, Eur. J. Inorg. Chem. 2075–2082 (2011)Google Scholar
  47. 47.
    Y.Q. Wei, Y.F. Yu, K.C. Wu, Cryst. Growth Des. 8, 2087–2089 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and Biological EngineeringLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations