Preparation, and Antibacterial Activity of Chloroacetic Acid Immobilized on Chitosan Coated Iron Oxide Decorated Silver Nanoparticles as an Efficient Catalyst for the Synthesis of Hexahydroquinoline-3-Carboxamides

  • Setareh Ghiassi
  • Masoud MokhtaryEmail author
  • Sajjad Sedaghat
  • Hassan Kefayati


Chloroacetic acid immobilized on chitosan (CS) coated iron oxide decorated by silver nanoparticles (Fe3O4@CS@Ag@CH2COOH) was synthesized as a biocompatible magnetic material. The Fe3O4@CS@Ag@CH2COOH nanocomposite was characterized using FT-IR, XRD, SEM, EDS, and TGA instruments. The surface morphology and size of Fe3O4@CS@Ag@CH2COOH nanocomposite were determined through SEM micrographs analysis. Moreover, magnetic characterization of the prepared nanocomposite was determined by VSM. The produced Fe3O4@CS@Ag and Fe3O4@CS@Ag@CH2COOH nanocomposites were screened for their antibacterial activity against gram-negative Escherichia coli and gram-positive Staphylococcus aureus. The results showed that the Fe3O4@CS@Ag and Fe3O4@CS@Ag@CH2COOH nanocomposites presented good antibacterial performance toward gram-negative Escherichia coli and gram-positive S. aureus. Furthermore, Fe3O4@CS@Ag@CH2COOH nanoparticles catalyzed one-pot synthesis of hexahydroquinoline-3-carboxamide derivatives by four-component reaction of arylaldehydes, dimedone, acetoacetanilide and ammonium acetate in ethanol at 70 °C.


Chitosan Nano-Fe3O4 Magnetic silver nanocomposites Antibacterial activity Hexahydroquinoline-3-carboxamide 



Financial support by Rasht Branch, Islamic Azad University Grant No. 4.5830 is gratefully acknowledged.


  1. 1.
    C.N.R. Rao, A. Muller, A.K. Cheetham, The chemistry of nanomaterials: synthesis and applications (Wiley-VCH, Weinheim, 2004)CrossRefGoogle Scholar
  2. 2.
    Y.W. Jun, J.W. Seo, J. Cheon, Acc. Chem. Res. 41, 179 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Mokhtary, J. Iran. Chem. Soc. 13, 1827 (2016)CrossRefGoogle Scholar
  4. 4.
    E.B. Denkbas, E. Kiliçay, C. Birlikseven, E. Öztürk, React. Funct. Polym. 50, 225 (2002)CrossRefGoogle Scholar
  5. 5.
    L. Korecka, J. Jezova, Z. Bilkova, M. Benes, D. Horak, O. Hradcova, M. Slovakova, J.L. Viovy, J. Magn. Magn. Mater. 293, 349 (2005)CrossRefGoogle Scholar
  6. 6.
    G.Y. Li, Y.R. Jiang, K.L. Huang, P. Ding, J. Chen, J. Alloys Compd. 466, 451 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Rinaudo, Prog. Polym. Sci. 31, 603 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Tu, Y. Yu, J. Chen, X. Shi, J. Zhou, H. Deng, Y. Du, Polym. Chem. 8, 2913 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Ali, S. Ahmed, Int. J. Biol. Macromol. 109, 273 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Li, L. Xiao, H. Deng, X. Shi, Q. Cao, Colloids Surf. B Biointerfaces 151, 354 (2017)CrossRefGoogle Scholar
  11. 11.
    A.J. Varma, S.V. Deshpande, J.F. Kennedy, Carbohydr. Polym. 55, 77 (2004)CrossRefGoogle Scholar
  12. 12.
    E.R. Welsh, C.L. Schauer, S.B. Qadri, R.R. Price, Biomacromol 3, 1370 (2002)CrossRefGoogle Scholar
  13. 13.
    M.R. Kasaai, J. Agric. Food Chem. 57, 1667 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry, Colloids Surf. B Biointerfaces 28, 313 (2003)CrossRefGoogle Scholar
  15. 15.
    T. Klaus-Joerger, R. Joerger, E. Olsson, Trends Biotechnol. 19, 15 (2001)CrossRefGoogle Scholar
  16. 16.
    M.I. Sriram, S.B.M. Kanth, K. Kalishwaralal, S. Gurunathan, Int. J. Nanomed. 5, 753 (2010)Google Scholar
  17. 17.
    R. Vaidyanathan, K. Kalishwaralal, S. Gopalram, S. Gurunathan, Biotechnol. Adv. 27, 924 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Ghiassi, S. Sedaghat, M. Mokhtary, H. Kefayati, J. Nanostruct. Chem. 8, 353–357 (2018)CrossRefGoogle Scholar
  19. 19.
    V.L. Gein, T.M. Zamaraeva, N.A. Buzmakova, B.Ya. Syropyatov, N.V. Alikina, Pharm. Chem. J. 50, 19 (2016)CrossRefGoogle Scholar
  20. 20.
    V.L. Gein, I.V. Kholkin, T.M. Zamaraeva, E.V. Voronina, M.I. Vakhrin, Pharm. Chem. J. 46, 49 (2012)Google Scholar
  21. 21.
    V.L. Gein, A.Y. Fedotov, T.M. Zamaraeva, A.A. Bobyleva, N.N. Kasimova, T.F. Odegova, Pharm. Chem. J. 46, 24 (2013)CrossRefGoogle Scholar
  22. 22.
    K. Ahmed, A.K. Jain, B. Dubey, B. Shrivastava, P. Sharma, S. Nadeem, Der Pharm. Chem. 7, 52–65 (2015)Google Scholar
  23. 23.
    V.L. Gein, M.I. Kazantseva, A.A. Kurbatova, M.I. Vahrin, Chem. Heterocycl. Compd. 46, 629 (2010)CrossRefGoogle Scholar
  24. 24.
    F. Haghghat, M. Mokhtary, J. Inorg. Organomet. Polym. 27, 779 (2017)CrossRefGoogle Scholar
  25. 25.
    R. Mohammadi, E. Eidi, M. Ghavami, M.Z. Kassaee, J. Mol. Catal. A 393, 309 (2014)CrossRefGoogle Scholar
  26. 26.
    A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck, Am. J. Clin. Pathol. 45, 493 (1966)CrossRefGoogle Scholar
  27. 27.
    L. Montazeri, J. Javadpour, M.A. Shokrgozar, Biomed. Mater. 5, 045004 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Farokhi, S. Sharifi, Y. Shafieyan, Z. Bagher, F. Mottaghitalab, A. Hatampoor, M. Imani, M.A. Shokrgozar, J. Biomed. Mater. Res. A 100, 1051 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Rasht BranchIslamic Azad UniversityRashtIran
  2. 2.Department of Chemistry, Shahr-e-Qods BranchIslamic Azad UniversityTehranIran

Personalised recommendations