Theoretical Investigation of The interaction Between Noble Metals (Ag, Au, Pd, Pt) and Stanene Nanosheets: A DFT Study

  • Amirali AbbasiEmail author


Adsorption of noble metals (Ag, Au, Pd and Pt) on the pristine stanene monolayers was investigated using the density functional theory calculations. Three different adsorption positions of noble metals on the stanene monolayer were considered, namely the top, valley and hollow sites. The structural stability of the metal adsorbed systems were discussed in term of adsorption energies. The results predict that the adsorption of noble metals on the hollow site of the stanene hexagon is more energetically favorable than that on the top and valley sites. Charge density difference calculations show that the charges were mainly accumulated over the adsorbed noble metals. The significant overlaps between the PDOS spectra of the noble metal and tin atoms indicate the formation of chemical bonds between them. Charge analysis based on Hirshfeld net atomic charges reveals a noticeable charge transfer from the stanene sheet to the adsorbed noble metals. Furthermore, the band structure calculations confirm that Ag and Au adsorbed stanene systems exhibit metallic behavior, whereas Pd and Pt adsorbed ones show semiconductor characteristics. The inclusion of SOC effect does not change the electronic phase of the systems, while the band gap gets narrower. The results confirm that noble metal embedded stanene monolayer can be used as effective and potential candidates for application in next-generation nanoelectronic devices.


DFT Stanene Noble metal Charge density difference Band structure 



This work has been supported by Azarbaijan Shahid Madani University.

Supplementary material

10904_2019_1151_MOESM1_ESM.docx (549 kb)
Supplementary material 1 (DOCX 548 kb)


  1. 1.
    T.A. Abtew, W.W. Gao, X. Gao, Y.Y. Sun, S.B. Zhang, P.H. Zhang, Theory of oxygen-boron vacancy defect in cubic boron nitride: a Diamond NV-Isoelectronic Center. Phys. Rev. Lett. 113, 136401 (2014)CrossRefGoogle Scholar
  2. 2.
    O. Leenaerts, B. Partoens, F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008)CrossRefGoogle Scholar
  3. 3.
    Q.H. Wang, K. Kalantar-Zadeh, A. His, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metaldichalcogenides. Nat. Nanotechnol. 7, 699 (2012)CrossRefGoogle Scholar
  4. 4.
    N. Drummond, V. Zolyomi, V. Fal’Ko, Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012)CrossRefGoogle Scholar
  5. 5.
    W. Hu, N. Xia, X. Wu, Z. Li, J. Yang, Silicene as a highly sensitive molecule sensor for NH3, NO and NO2. Phys. Chem. Chem. Phys. 16, 6957–6962 (2014)CrossRefGoogle Scholar
  6. 6.
    W. Hu, X. Wu, Z. Li, J. Yang, Helium separation via porous silicene based ultimate membrane. Nanoscale 5, 9062–9066 (2013)CrossRefGoogle Scholar
  7. 7.
    W. Xia, W. Hu, Z. Li, J. Yang, A first-principles study of gas adsorption on germanene. Phys. Chem. Chem. Phys. 16, 22495–22498 (2014)CrossRefGoogle Scholar
  8. 8.
    T.P. Kaloni, Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms. J. Phys. Chem. C 118, 25200–25208 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Zhao, X. Zhang, L. Li, Strain-driven band inversion and topological aspects in Antimonene. Sci. Rep. 5, 16108 (2015)CrossRefGoogle Scholar
  10. 10.
    O.Ü. Aktürk, E. Aktürk, S. Ciraci, Effects of adatoms and physisorbed molecules on the physical properties of antimonene. Phys. Rev. B 93, 035450 (2016)CrossRefGoogle Scholar
  11. 11.
    P.T.T. Le, M. Yarmohammadi, Tuning thermoelectric transport in phosphorene through a perpendicular magnetic field. Chem. Phys. 519, 1–5 (2019)CrossRefGoogle Scholar
  12. 12.
    P.T.T. Le, M. Davoudiniya, K. Mirabbaszadeh, B.D. Hoi, M. Yarmohammadi, Combined electric and magnetic field-induced anisotropic tunable electronic phase transition in AB-stacked bilayer phosphorene. Phys. E 106, 250–257 (2019)CrossRefGoogle Scholar
  13. 13.
    D.H. Bui, M. Yarmohammadi, Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus. Phys. Lett. A 382, 1885–1889 (2018)CrossRefGoogle Scholar
  14. 14.
    D.H. Bui, M. Yarmohammadi, Anisotropic electronic heat capacity and electrical conductivity of monolayer biased impurity-infected black phosphorus. Solid State Commun. 280, 39–44 (2018)CrossRefGoogle Scholar
  15. 15.
    D.H. Bui, M. Yarmohammadi, Direction-dependent electronic phase transition in magnetic field-induced gated phosphorene. J. Magn. Magn. Mater. 465, 646–650 (2018)CrossRefGoogle Scholar
  16. 16.
    H.D. Bui, L.T.T. Phuong, M. Yarmohammadi, On the influence of dilute charged impurity and perpendicular electric field on the electronic phase of phosphorene: band gap engineering. EPL 124(2), 27001 (2018)CrossRefGoogle Scholar
  17. 17.
    B.D. Hoi, M. Yarmohammadi, Combined effect of the perpendicular magnetic field and dilute charged impurity on the electronic phase of bilayer AA-stacked hydrogenated graphene. Phys. Lett. A 382, 3298–3305 (2018)CrossRefGoogle Scholar
  18. 18.
    B.D. Hoi, M. Yarmohammadi, Zeeman magnetic field induced magnetic phase transition in doped armchair boron-nitride nanoribbons. EPL 122(1), 17005 (2018)CrossRefGoogle Scholar
  19. 19.
    B.D. Hoi, M. Yarmohammadi, K. Mirabbaszadeh, H. Habibiyan, Spin- and valley-dependent electrical conductivity of ferromagnetic group-IV 2D sheets in the topological insulator phase. Phys. E 97, 340–346 (2018)CrossRefGoogle Scholar
  20. 20.
    B.D. Hoi, M. Yarmohammadi, Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons. Phys. Lett. A 382, 995–999 (2018)CrossRefGoogle Scholar
  21. 21.
    P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.L. Lay, Phys. Rev. Lett. 108, 155501 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Cahangirov, M. Audiffred, P.Z. Tang, A. Iacomino, W. Duan, H.G. Merino, A. Rubio, Phys. Rev. B 88, 035432 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012)CrossRefGoogle Scholar
  24. 24.
    H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, ACS Nano 3, 2653–2659 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Li, S.Z. Lu, J. Pan, Z. Qin, Y.Q. Wang, Y. Wang, G.Y. Cao, S. Du, H.J. Gao, Adv. Mater. 26, 4820–4824 (2014)CrossRefGoogle Scholar
  26. 26.
    F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia, Nat. Mater. 14, 1020–1025 (2015)CrossRefGoogle Scholar
  27. 27.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)CrossRefGoogle Scholar
  28. 28.
    M. Zheng, K. Takei, B. Hsia, F. Hui, Z. Xiao, B.N. Ferralis, K. Hyunhyub, C.Y. Lun, Z.Y. Gang, R. Maboudian, A. Javey, Appl. Phys. Lett. 96, 063110 (2010)CrossRefGoogle Scholar
  29. 29.
    D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Adv. Phys. 59, 261 (2010)CrossRefGoogle Scholar
  30. 30.
    A.K. Singh, K. Mathew, H.L. Zhuang, R.G. Hennig, Computational screening of 2D materials for photocatalysis. J. Phys. Chem. Lett. 6, 1087–1098 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)CrossRefGoogle Scholar
  33. 33.
    Y. Cai, G. Zhang, Y.-W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013)CrossRefGoogle Scholar
  35. 35.
    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)CrossRefGoogle Scholar
  36. 36.
    H. Liu, Y. Du, Y. Deng, D.Y. Peide, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Chen, C. Tan, Q. Yang, R. Meng, Q. Liang, J. Jiang, X. Sun, T. Ren, Effect of multilayer structure, stacking order and external electric field on electrical properties of few-layer boron-phosphide. Phys. Chem. Chem. Phys. 20, 16 (2016). Google Scholar
  38. 38.
    X. Chen, R. Meng, J. Jiang, Q. Liang, Q. Yang, C. Tan, X. Sun, S. Zhang, T. Ren, Electronic structure and optical properties of graphene/stanene heterobilayer. Phys. Chem. Chem. Phys. (2016). Google Scholar
  39. 39.
    Y. Xu, B. Yan, H.J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.C. Zhang, Phys. Rev. Lett. 111, 136804 (2013)CrossRefGoogle Scholar
  40. 40.
    C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011)CrossRefGoogle Scholar
  41. 41.
    G.F. Zhang, Y. Li, C. Wu, Phys. Rev. B 90, 075114 (2014)CrossRefGoogle Scholar
  42. 42.
    Y. Xu, Z. Gan, S.C. Zhang, Phys. Rev. Lett. 112, 226801 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Wang, Y. Xu, S.-C. Zhang, Phys. Rev. B 90, 054503 (2014)CrossRefGoogle Scholar
  44. 44.
    P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605–615 (2007)CrossRefGoogle Scholar
  45. 45.
    P. Garg, I. Choudhuri, B. Pathak, Phys. Chem. Chem. Phys. 19, 31325 (2017)CrossRefGoogle Scholar
  46. 46.
    W. Xiong, C. Xia, Y. Peng, J. Du, T. Wang, J. Zhang, Y. Jiac, Phys. Chem. Chem. Phys. 18, 6534–6540 (2016)CrossRefGoogle Scholar
  47. 47.
    Y. Ding, Y. Wang, J. Phys. Chem. C 119, 27848–27854 (2015)CrossRefGoogle Scholar
  48. 48.
    A. Barfuss, L. Dudy, M.R. Scholz, H. Roth, P. Hӧpfner, C. Blumenstein, G. Landolt, J.H. Dil, N.C. Plumb, M. Radovic et al., Phys. Rev. Lett. 111, 15720 (2013)CrossRefGoogle Scholar
  49. 49.
    Y. Xu, P. Tang, S.-C. Zhang, Phys. Rev. B 92, 081112 (2015)CrossRefGoogle Scholar
  50. 50.
    W. Xiong, C. Xia, T. Wang, Y. Peng, Y. Jia, J. Phys. Chem. C 120, 10622–10628 (2016)CrossRefGoogle Scholar
  51. 51.
    Y. Xu, P. Tang, S.-C. Zhang, Phys. Rev. B 92, 081112 (2015)CrossRefGoogle Scholar
  52. 52.
    M. Wang, L. Liu, C.-C. Liu, Y. Yao, Phys. Rev. B 93, 155412 (2016)CrossRefGoogle Scholar
  53. 53.
    D.X. Xing, C.C. Ren, S.F. Zhang, Y. Feng, X.L. Chen, C.W. Zhang, P.J. Wang, Tunable electronic and magnetic properties in stanene by 3d transition metal atoms absorption. Superlattices Microstruct. 103, 139–144 (2017)CrossRefGoogle Scholar
  54. 54.
    A. Abbasi, DFT study of the effects of Al-P pair doping on the structural and electronic properties of stanene nanosheets. Phys. E 108, 34–43 (2019)CrossRefGoogle Scholar
  55. 55.
    A. Abbasi, J.J. Sardroodi, Electronic structure tuning of stanene monolayers from DFT calculations: effects of substitutional elemental doping. Appl. Surf. Sci. 456, 290–301 (2018)CrossRefGoogle Scholar
  56. 56.
    A. Abbasi, Adsorption of phenol, hydrazine and thiophene on stanene monolayers: a computational investigation. Synth. Met. 247, 26–36 (2019)CrossRefGoogle Scholar
  57. 57.
    A. Abbasi, J.J. Sardroodi, Structural and electronic properties of group-IV tin nanotubes and their effects on the adsorption of SO2 molecules: insights from DFT computations. J. Appl. Phys. 124, 165302 (2018)CrossRefGoogle Scholar
  58. 58.
    A. Abbasi, J.J. Sardroodi, Interaction of sulfur trioxide molecules with armchair and zigzag stanene-based nanotubes: electronic properties exploration by DFT calculations. Adsorption 24, 443–458 (2018)CrossRefGoogle Scholar
  59. 59.
    A. Abbasi, J.J. Sardroodi, Electronic structure tuning of stanene monolayers from DFT calculations: effects of substitutional elemental doping. Appl. Surf. Sci. 456, 290–301 (2018)CrossRefGoogle Scholar
  60. 60.
    A. Abbasi, J.J. Sardroodi, An innovative method for the removal of toxic SOx molecules from environment by TiO2/Stanene nanocomposites: a first-principles study. J. Inorg. Organomet. Polym Mater. 28(5), 1901–1913 (2018)CrossRefGoogle Scholar
  61. 61.
    X. Wang, P. Wang, G. Bian, T.C. Chiang, Topological phase transitions in stanene and stanene-like systems by scaling the spin-orbit coupling. EPL 115(3), 37010 (2016)CrossRefGoogle Scholar
  62. 62.
    V. Nagarajan, R. Chandiramouli, Investigation of electronic properties and spin-orbit coupling effects on passivated stanene nanosheet: a first-principles study. Superlattices Microstruct. 107, 118–126 (2017)CrossRefGoogle Scholar
  63. 63.
    M. Noshin, A.I. Khan, S. Subrina, Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures. Nanotechnology 29(18), 185706 (2018)CrossRefGoogle Scholar
  64. 64.
    D. Qian, J.F. Jia, Recent progress in the study of stanene. Chin. Sci. Bull. 61(30), 3252–3257 (2016)Google Scholar
  65. 65.
    M. El Bachra, H. Zaari, A. Benyoussef, A. El Kenz, A.G. El Hachimi, First-principles calculations of van der Waals and spin orbit effects on the two-dimensional topological insulator stanene and stanene on ge(111) substrate. J. Supercond. Novel Magn. 31(8), 2579–2588 (2018)CrossRefGoogle Scholar
  66. 66.
    S. Saxena, R. PratapChaudhary, S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin. Sci. Rep. 6, 31073 (2016)CrossRefGoogle Scholar
  67. 67.
    V. Nagarajan, R. Chandiramouli, Adsorption behavior of NH3 and NO2molecules on stanene and stanane nanosheets: a density functional theory study. Chem. Phys. Lett. 695, 162–169 (2018)CrossRefGoogle Scholar
  68. 68.
    R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Adsorption studies of trimethyl amine and n-butyl amine vapors on stanene nanotube molecular device: a first-principles study. Chem. Phys. 501, 78–85 (2018)CrossRefGoogle Scholar
  69. 69.
    V. Nagarajan, R. Chandiramouli, Interaction of volatile organic compounds (VOCs) emitted from banana on stanene nanosheet—a first-principles studies. Struct. Chem. 29(5), 1321–1332 (2018)CrossRefGoogle Scholar
  70. 70.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)CrossRefGoogle Scholar
  71. 71.
    W. Kohn, L. Sham, Self-Consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  72. 72.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garca, J. Junquera, P. Ordejn, D. Snchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. 14, 2745–2779 (2002)Google Scholar
  73. 73.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1981)CrossRefGoogle Scholar
  74. 74.
    A. Koklj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003)CrossRefGoogle Scholar
  75. 75.
    N. Troullier, J. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)CrossRefGoogle Scholar
  76. 76.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  77. 77.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  78. 78.
    B. Broek, M. Houssa, E. Scalise, G. Pourtois, V.V. Afanas’ev Stesmans, 2D Materials 1(2), 021004 (2014)CrossRefGoogle Scholar
  79. 79.
    A. Kuc, T. Heine, Chem. Soc. Rev. 44, 2603–2614 (2015)CrossRefGoogle Scholar
  80. 80.
    Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Phys. Rev. Lett. 111, 136804 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Simulation Laboratory (MSL)Azarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Computational Nanomaterials Research Group (CNRG)Azarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations