Advertisement

Synthesis of Fe3O4–Fe2O3@C Core-Shell Nanoparticles: Effect of Reactional Parameters on Structural and Magnetics Properties

  • Marla M. Lima
  • Domingos L. P. Macuvele
  • Janaína Nones
  • Luciano L. Silva
  • Humberto G. Riella
  • Márcio A. Fiori
  • Cíntia SoaresEmail author
Article
  • 26 Downloads

Abstract

The goal of this paper was to synthesize and characterize core–shell iron-carbon nanoparticles. For this purpose, nanoparticles were synthetized via a hydrothermal co-precipitation route, applying a 22 factorial experimental design with a central point, and varying both the concentration of the iron precursor (iron nitrate) and the reaction temperature. The nanoparticles were characterized via the following analysis: vibrating sample magnometry (VSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), high resolution field emission gun scanning electron microscopy (SEM/FEG) and transmission electron microscopy (TEM) analysis. The results showed that the hydrothermal co-precipitation synthesis route enabled the production of Fe3O4–Fe2O3@C core–shell nanoparticles with dimensions between 4 and 8 nm. An increase in iron nitrate concentration and temperature during synthesis entailed a decrease in the remnant field and the magnetization of the nanoparticles.

Keywords

Core–shell nanoparticles Magnetic nanoparticles Synthesis 

Notes

Acknowledgements

We acknowledge research supported by LCME-UFSC and financial support from the Ministério da Ciência e Tecnologia/Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq/Brazil) and CAPES.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    X. Jian, X. Xiao, L. Deng, W. Tian, X. Wang, N. Mahmood, S.X. Dou, ACS Appl. Mater. Interfaces. 10, 9369 (2018)CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, J. Kong, J. Hazard. Mater. 193, 325 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Mandal, World J. Biol. Chem. 7, 158 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Ali, H. Zafar, M. Zia, I.U. Haq, A.R. Phull, J.S. Ali, A. Hussain, Nanotechnol. Sci. Appl. 9, 49 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Zheng, Z.Q. Liu, X.S. Zhao, M. Liu, X. Liu, W. Chu, Nanotechnology 23, 165601 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Guo, X. Zhang, X. Feng, X. Jia, L. Zhang, L. Zhang, XingzhongDeng. Compos. B Eng. 155, 282 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, Y. Fu, L. Liu, W. Li, J. Guan, G. Tong, ACS Appl. Mater. Interfaces. 10, 16511 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Xiao, W. Zhu, W. Wei, Y. Guo, H. Wang, W. Tian, J. Fu, X. Jian, Compos. B Eng. 152, 316 (2018)CrossRefGoogle Scholar
  9. 9.
    L. Yin, T. Chen, S. Liu, Y. Gao, B. Wu, Y. Wei, G. Li, X. Jian, X. Zhang, RSC Adv. 5, 91665 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Huang, Y. Li, X. Jia, H. Song, Tribol. Int. 129, 427 (2019)CrossRefGoogle Scholar
  11. 11.
    Y.-H. Jin, S.-D. Seo, H.-W. Shim, K.-S. Park, D.-W. Kim, Nanotechnology 23, 125402 (2012)CrossRefGoogle Scholar
  12. 12.
    V.V. Srdić, B. Mojić, M. Nikolić, S. Ognjanović, Process. Appl. Ceram. 7, 45 (2013)CrossRefGoogle Scholar
  13. 13.
    X.B. Zhang, H.W. Tong, S.M. Liu, G.P. Yong, Y.F. Guan, J. Mater. Chem. A 1, 7488 (2013)CrossRefGoogle Scholar
  14. 14.
    C. Sun, K. Sun, S. Tang, Mater. Chem. Phys. 207, 181 (2018)CrossRefGoogle Scholar
  15. 15.
    M.M. Lima, J.P.Z. Gonçalves, C. Soares, H.G. Riella, S.C. Fernandes, M.A. Fiori, L.L. Silva, Mater. Sci. Forum 899, 221 (2017)CrossRefGoogle Scholar
  16. 16.
    R.G. Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, Nanotechnology 18, 035602 (2007)CrossRefGoogle Scholar
  18. 18.
    C. Fu, D. He, Y. Wang, X. Zhao, RSC Adv. 8, 15358 (2018)CrossRefGoogle Scholar
  19. 19.
    M.M. Lima, D.L.P. Macuvele, L. Muller, J. Nones, L.L. Silva, M.A. Fiori, C. Soares, H.G. Riella, J. Adv. Chem. Eng. 07, 1 (2017)CrossRefGoogle Scholar
  20. 20.
    D.L. Xiao, H. Li, H. He, R. Lin, P.L. Zuo, Xinxing Tan Cailiao/New Carbon Mater. 29, 15 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008)CrossRefGoogle Scholar
  22. 22.
    P. Luo, J. Yu, Z. Shi, F. Wang, L. Liu, H. Huang, Y. Zhao, H. Wang, G. Li, Y. Zou, Mater. Lett. 80, 121 (2012)CrossRefGoogle Scholar
  23. 23.
    B. Wang, G. Wang, Z. Zheng, H. Wang, J. Bai, J. Bai, Electrochim. Acta 106, 235 (2013)CrossRefGoogle Scholar
  24. 24.
    M.C. Mascolo, Y. Pei, T.A. Ring, Materials 6, 5549 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Pu, L. Shen, S. Zhu, J. Wang, W. Zhang, Z. Wang, J. Solid State Electrochem. 18, 1067 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Lou, H. Huang, M. Li, T. Shang, C. Chen, Materials 7, 97 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Mi, Y. Xu, W. Shi, H.D. Yoo, O.B. Chae, S.M. Oh, Mater. Res. Bull. 47, 152 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Qiao, Q. Luo, J. Fu, J. Li, D. Kumar, Y. Cai, F. Huang, Q. Wei, J. Alloy. Compd. 513, 220 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Liu, Y. Li, K. Jiang, G. Tong, T. Lv, W. Wu, J. Mater. Chem. C 4, 7316 (2016)CrossRefGoogle Scholar
  30. 30.
    B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, J. Photochem. Photobiol., A 314, 178 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Qu, T. Han, Z. Luo, C. Liu, Y. Mei, T. Zhu, J. Phys. Chem. Solids 78, 20 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Liang, Q. Zhu, T. Wang, F. Wang, J. Ma, L. Jing, J. Sun, Microporous Mesoporous Mater. 197, 221 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Hao, X. Rao, Z. Li, C. Niu, J. Wang, X. Su, J. Alloy. Compd. 617, 76 (2014)CrossRefGoogle Scholar
  34. 34.
    F. Heider, A. Zitzelsberger, K. Fabian, Phys. Earth Planet. Inter. 93, 239 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate Program in Chemical EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of ChemistryPedagógica University of Mozambique, Branch of NiassaLichingaMozambique
  3. 3.Graduate Program in Environmental Science and Post-Graduation Program in Technology and Management of the InnovationCommunity University of Region ChapecóChapecóBrazil

Personalised recommendations