Advertisement

Enhanced Anti-ablation and Alkali Corrosion Resistance of Graphene Oxide Modified Urea-Melamine-Phenol Formaldehyde Composites Reinforced by R-Glass Fiber

  • Cao Wu
  • Zhaofeng ChenEmail author
  • Fei Wang
Article
  • 14 Downloads

Abstract

Graphene oxide (GO) modified urea-melamine-phenol formaldehyde resin (UMPF) was reinforced by R-glass fiber woven. GO was reduced by UMPF to reduced graphene oxide (RGO). Transmission electron microscopy (TEM), atomic force microscope (AFM), and scanning electron microscopy (SEM) were used to analyze the morphology and dispersibility of RGO in UMPF. Compared with the pure R-glass fiber woven reinforced urea-melamine-phenol formaldehyde resin (RFW-UMPF), the thermal conductivity and carbon residual value (CRV) of R-glass fiber woven reinforced GO modified urea-melamine-phenol formaldehyde resin (RFW-GO/UMPF) (0.8 wt% RGO) at 800 °C were increased by 6.3% and 20%, respectively. Anti-ablation researches revealed that with 0.8 wt% RGO loading, the linear ablation rate (LAR) and mass ablation rate (MAR) of RFW-GO/UMPF deceased by 25.6% and 12.6%, respectively. Moreover, the enhancement mechanism of RGO on anti-ablation properties and alkali corrosion resistance (ACR) performances were systematically discussed.

Keywords

Graphene oxide Urea-melamine-phenol formaldehyde resin Thermal performance Anti-ablation Alkali corrosion resistance 

Notes

Acknowledgements

This work was supported by The Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); the National Natural Science Foundation of China under Grant No. 51772151; Nanjing University of Aeronautics and Astronautics PhD short-term visiting scholar project under Grant180502DF06; and The Construction Project of NUAA Suqian Institute of Advanced Materials and Equipment Manufacturing under Grant BM2016010.

References

  1. 1.
    S. Joseph, M.S. Sreekala, Z. Oommen, P. Koshy, S. Thomas, Compos. Sci. Technol. 62, 1857 (2002)CrossRefGoogle Scholar
  2. 2.
    M.S. Sreekala, J. George, M.G. Kumaran, S. Thomas, Compos. Sci. Technol. 62, 339 (2002)CrossRefGoogle Scholar
  3. 3.
    S. Wang, S. Adanur, B.Z. Jang, Compos. Part B-Eng. 28, 215 (1997)CrossRefGoogle Scholar
  4. 4.
    P.O. Powers, Ind. Eng. Chem. 45, 1063 (1953)CrossRefGoogle Scholar
  5. 5.
    T. Sellers Jr., For. Prod. J. 51, 12 (2001)Google Scholar
  6. 6.
    T. Horikawa, K. Ogawa, K. Mizuno, J. Hayashi, K. Muroyama, Carbon 41, 465 (2003)CrossRefGoogle Scholar
  7. 7.
    W. Xu, C. Wei, J. Lv, H. Liu, X. Huang, T. Liu, J. Nanomater. 2013, 86 (2013)Google Scholar
  8. 8.
    M. Singh, J. Appl, Polym. Sci. 92, 3437 (2004)Google Scholar
  9. 9.
    S. Tohmura, A. Inoue, S.H. Sahari, J. Wood Sci. 47, 451 (2001)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, Z. Chen, B. Li, L. Sha, Z. Chen, C. Wu, Y. Li, J. Ind. Text. 47, 1121 (2018)CrossRefGoogle Scholar
  11. 11.
    C.C.M. Ma, C.T. Lee, H.D. Wu, J. Appl. Polym. Sci. 69, 1129 (1998)CrossRefGoogle Scholar
  12. 12.
    H.D. Wu, C.C.M. Ma, M.S. Lee, Y.D. Wu, J. Appl, J. Appl. Polym. Sci. 62, 227 (1996)CrossRefGoogle Scholar
  13. 13.
    H. Yang, X. Wang, H. Yuan, L. Song, Y. Hu, J. Polym. Res. 19, 9831 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Wei, C. Wei, L. Su, J. Fu, J. Lv, J. Mater. Sci. Chem. Eng. 3, 56 (2015)Google Scholar
  15. 15.
    X. Sui, Z. Wang, Polym. Adv. Technol. 24, 593 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Liu, Z. Ye, Polym. Degrad. Stabil. 94, 1972 (2009)CrossRefGoogle Scholar
  17. 17.
    C. Wu, Z. Chen, F. Wang, Y. Hu, E. Wang, Z. Rao, X. Zhang, Mater. Res. Express. 6, 025302 (2018)CrossRefGoogle Scholar
  18. 18.
    F.Y. Yuan, H.B. Zhang, X. Li, H.L. Ma, X.Z. Li, Z.Z. Yu, Carbon 68, 653 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Zhao, Y. Li, J. Wang, Z. Ouyang, J. Li, G. Wei, Z. Su, ACS Appl. Mater. Int. 6, 4254 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Zeng, X. Xiong, G. Li, Z. Chen, W. Sun, D. Wang, Carbon 54, 300 (2013)CrossRefGoogle Scholar
  21. 21.
    K.N. Bharath, M.R. Sanjay, M. Jawaid, S.B. Harisha, S. Siengchin, J. Ind. Text. 5, 4 (2018).  https://doi.org/10.1177/1528083718769926 Google Scholar
  22. 22.
    C. Wu, Z. Chen, F. Wang, Y. Hu, E. Wang, Z. Rao, X. Zhang, Compos. Part B-Eng. 162, 378–387 (2019)CrossRefGoogle Scholar
  23. 23.
    H. Zhong, J.R. Lukes, Phys. Rev. B. 74, 125403 (2006)CrossRefGoogle Scholar
  24. 24.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N.L. Lau, Nano Lett. 8, 902 (2008)CrossRefGoogle Scholar
  25. 25.
    V. Alzari, V. Sanna, S. Biccai, T. Caruso, A. Politano, N. Scaramuzza, M. Sechi, D. Nuvoli, R. Sanna, A. Mariani, Compos. Part B-Eng. 60, 29 (2014)CrossRefGoogle Scholar
  26. 26.
    I. Srikanth, N. Padmavathi, S. Kumar, P. Ghosal, A. Kumar, C. Subrahmanyam, Compos. Sci. Technol. 80, 1 (2013)CrossRefGoogle Scholar
  27. 27.
    Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, S. Saeed, Compos. Part B-Eng. 76, 174 (2015)CrossRefGoogle Scholar
  28. 28.
    B. Sang, Z. Li, X. Li, L. Yu, Z. Zhang, J. Mater. Sci. 51, 8271 (2016)CrossRefGoogle Scholar
  29. 29.
    G. Huang, J. Gao, X. Wang, H. Liang, C. Ge, Mater. Lett. 66, 187 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Liu, H. Yan, Z. Fang, H. Wang, Compos. Sci. Technol. 90, 40 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Liang, Y. Huang, L. Zhang, Y. Wang, T. Guo, Y. Chen, Adv. Funct. Mater. 19, 2297 (2009)CrossRefGoogle Scholar
  32. 32.
    L.C.O. Silva, G.G. Silva, P.M. Ajayan, B.G. Soares, J. Mater. Sci. 50, 6407 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Suqian NUAA Institute of Advanced Materials and Equipment Manufacturing Co., Ltd.SuqianPeople’s Republic of China

Personalised recommendations