Thermal Decomposition of Ammonium Perchlorate in the Presence of Cobalt Hydroxyl@Nano-Porous Polyaniline

  • Sajjad Ebrahimi
  • Alireza ShakeriEmail author
  • Taher Alizadeh


In this report, nanoporous polyaniline (NP-PANi) as an intrinsic conductive polymer (ICPs) was sonochemically synthesized and coated by Cobalt Hydroxyl nanoparticles using precipitation method. The prepared Cobalt Hydroxyl@NP-PANi (CoPANi) merged two separated peaks of AP into a width peak revealed at 297 °C, and drastically increased the area under the peak about 90–334%. Dependency of activation energy (Eα) to the reaction progress (α) was investigated by Starink method and results showed that in the presence of CoPANi throughout the reaction, Eα of AP decomposition was completely shifted to the lower values. The thermal decomposition mechanisms of samples were evaluated by Complementary method using a MATLAB code. The best decomposition reaction model obtained for AP was Avrami Erofeyev (A2) which CoPANi changed it to (A4); this caused Ea reduced from 161 (KJ/mol) to 113 (KJ/mol). Reaction rate constant, pre-exponential factor, Characteristic temperatures (TSADT and Tb) and thermodynamic parameters have been also calculated, the noted parameters presented a descending trend when the CoPANi was used. As the results confirmed the strong modifying effect of Cobalt Hydroxyl@NP-PANi on AP decomposition reaction, this report would be helpful for further application of M(OH)x@ICPs as a new family of burning rate modifier materials used for decomposition of energetic material.


Ammonium perchlorate Burning rate modifier Cobalt hydroxyl Kinetic parameters Nano-porous polyaniline Reaction mechanism 


Supplementary material

10904_2019_1133_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1655 KB)


  1. 1.
    S.G. Hosseini, E. Ayoman, A. Kashi, Part. Sci. Technol. 36, 7581 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Kumar, P.N. Tengli, V.K. Mishra, P. Tripathi, A. Bhushan, P.K. Mishra, RSC Adv. 7, 36594 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Wang, W. Zhang, Z. Zheng, Y. Gao, K. Ma, J. Ye, Y. Yang, J. Alloys Compd. 724, 720 (2017)CrossRefGoogle Scholar
  4. 4.
    M.R. Sovizi, G. Fakhrpour, A.R. Madram, Phys. Chem. Res. 4, 369 (2016)Google Scholar
  5. 5.
    M. Remanan, M. Kannan, R.S. Rao, S. Bhowmik, L. Varshney, M. Abraham, K. Jayanarayanan, J. Inorg. Organometall. Polym. Mater. 27, 1649 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Fengjuan, S. Minmei, P. Lei, L. Yunjun, Z. Junchai, J. Inorg. Organometall. Polym. Mater. 21, 175 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Vyazovkin, C.A. Wight, Chem. Mater. 11, 3386 (1999)CrossRefGoogle Scholar
  8. 8.
    R. Bogusz, P. Magnuszewska, B. Florczak, A. Maranda, K. Drożdżewska, Cent. Eur. J. Energ. Mater. 13, 1051 (2016)CrossRefGoogle Scholar
  9. 9.
    S.G. Hosseini, R. Abazari, RSC Adv. 5, 96777 (2015)CrossRefGoogle Scholar
  10. 10.
    N.M. Juibari, A. Eslami, J. Thermal Anal. Calorim. 128, 115 (2017)CrossRefGoogle Scholar
  11. 11.
    Q.-L. Yan, F.-Q. Zhao, K.K. Kuo, X.-H. Zhang, S. Zeman, L.T. DeLuca, Prog. Energy Combust. Sci. 57, 75 (2016)CrossRefGoogle Scholar
  12. 12.
    X. Zheng, P. Li, S. Zheng, Y. Zhang, Powder Technol. 268, 446 (2014)CrossRefGoogle Scholar
  13. 13.
    W. Chen, F. Li, J. Liu, H. Song, J. Yu, Chin. J. Catal. 26, 1073 (2005)Google Scholar
  14. 14.
    J. Zhu, H. Chen, B. Xie, X. Yang, L. Lu, X. Wang, Chin. J. Catal. 25, 637 (2004)Google Scholar
  15. 15.
    Z. Ma, F. Li, P. Cui, H. Bai, Chin. J. Catal. 24, 795 (2003)Google Scholar
  16. 16.
    X. Cao, F. Li, Y. Yang, J. Liu, Chin. J. Catal. 27, 157 (2006)Google Scholar
  17. 17.
    L. Tan, J. Xu, X. Zhang, Z. Hang, Y. Jia, S.J.A.S.S. Wang, Appl. Surf. Sci. 356, 447 (2015)CrossRefGoogle Scholar
  18. 18.
    W. Wang, D.J.R.A. Zhang, RSC Adv. 8, 32221 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Chawla, R. Dubey, G. Singh, S.K. Sengupta, P.F. Siril, Thermochim. Acta 654, 130 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Jing, S. Song, J. Wang, L. Ge, S. Jamil, Q. Liu, T. Mann, Y. He, M. Zhang, H. Wei, Powder Technol. 217, 624 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, X. Xu, Y. Zhao, H. Zhou, J. Li, H. Jin, J. Alloy. Compd. 654, 523 (2016)CrossRefGoogle Scholar
  22. 22.
    M.J.R. Cardoso, M.F.S. Lima, D.M. Lenz, Mater. Res. 10, 425 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Stejskal, I. Sapurina, Pure Appl. Chem. 77, 815 (2005)CrossRefGoogle Scholar
  24. 24.
    H. Zeghioud, S. Lamouri, Y. Mahmoud, T. Hadj-Ali, J. Serb. Chem. Soc. 80, 1435 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Zięba, A. Drelinkiewicz, E. Konyushenko, J. Stejskal, Appl. Catal. A 383, 169 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Vyazovkin, Thermochim. Acta 355, 155 (2000)CrossRefGoogle Scholar
  27. 27.
    L. Zhang, M. Huang, C. Zhou, Am. J. Anal. Chem. 4, 749 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Starink, Thermochim. Acta 404, 163 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Abd-Elghany, T.M. Klapötke, A. Elbeih, S. Zeman, J. Anal. Appl. Pyrol. 126, 267 (2017)CrossRefGoogle Scholar
  30. 30.
    H.E. Kissinger, J. Res. Natl. Bur. Stand. 57, 217 (1956)CrossRefGoogle Scholar
  31. 31.
    M. Sovizi, S. Hajimirsadeghi, B. Naderizadeh, J. Hazard. Mater. 168, 1134 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Sovizi, J. Therm. Anal. Calorim. 102, 285 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Ebrahimi, A. Shakeri, T. Alizadeh, ChemistrySelect 3, 11103 (2018)CrossRefGoogle Scholar
  34. 34.
    D. Zhang, D. Wang, X. Zong, G. Dong, Y. Zhang, Sens. Actuat. B 262, 531 (2018)CrossRefGoogle Scholar
  35. 35.
    C.M. Correa, R. Faez, M.A. Bizeto, F.F. Camilo, Rsc Adv. 2, 3088 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Gao, G. Wang, M. Yang, L. Tan, J. Yu, Nanotechnology 23, 015607 (2011)CrossRefGoogle Scholar
  37. 37.
    X. Lei, Z. Shi, X. Wang, T. Wang, J. Ai, P. Shi, R. Xue, H. Guo, W. Yang, Colloids Surf. A 549, 76 (2018)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, C. Meng, J. Alloy. Compd. 674, 259 (2016)CrossRefGoogle Scholar
  39. 39.
    A.K. Galwey, R. Kinetics, Mech. Catal. 114, 1 (2015)Google Scholar
  40. 40.
    F. Yakuphanoglu, B. Şenkal, J. Phys. Chem. C 111, 1840 (2007)CrossRefGoogle Scholar
  41. 41.
    J. Wang, Y. Li, H. Wang, T. Tian, S. Zhu, J. Zhou, X. Wu, W. Qin, Eur. J. Inorg. Chem. 2017, 3154 (2017)CrossRefGoogle Scholar
  42. 42.
    E. Alizadeh-Gheshlaghi, B. Shaabani, A. Khodayari, Y. Azizian-Kalandaragh, R. Rahimi, Powder Technol. 217, 330 (2012)CrossRefGoogle Scholar
  43. 43.
    A.A. Vargeese, K. Muralidharan, Appl. Catal. A 447, 171 (2012)CrossRefGoogle Scholar
  44. 44.
    F. Azimfar, I. Kohsari, S. Pourmortazavi, J. Inorg. Organomet. Polym. Mater. 19, 181 (2009)CrossRefGoogle Scholar
  45. 45.
    M.R. Sovizi, G. Fakhrpour, A.R. Madram, J. Therm. Anal. Calorim. 129, 401 (2017)CrossRefGoogle Scholar
  46. 46.
    M. León, E. Díaz, A. Vega, S. Ordóñez, Chem. Eng. J. 175, 341 (2011)CrossRefGoogle Scholar
  47. 47.
    A.W. Coats, J. Redfern, Nature 201, 68 (1964)CrossRefGoogle Scholar
  48. 48.
    A. Khawam, D.R. Flanagan, J. Phys. Chem. B 109, 10073 (2005)CrossRefGoogle Scholar
  49. 49.
    Z. Tonglai, H. Rongzu, X. Yi, L. Fuping, Thermochim. Acta 244, 171 (1994)CrossRefGoogle Scholar
  50. 50.
    S. Chaturvedi, P.N. Dave, J. Saud. Chem. Soc. 17, 135 (2013)CrossRefGoogle Scholar
  51. 51.
    D. Hongzhen, L. Xiangyang, L. Guanpeng, X. Lei, L. Fengsheng, Chin. J. Chem. Eng. 16, 325 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Jamil, X. Jing, J. Wang, J. Liu, M. Zhang, Mater. Res. Bull. 48, 4513 (2013)CrossRefGoogle Scholar
  53. 53.
    S. Lu, X. Jing, J. Liu, J. Wang, Q. Liu, Y. Zhao, S. Jamil, M. Zhang, L. Liu, J. Solid State Chem. 197, 345 (2013)CrossRefGoogle Scholar
  54. 54.
    A. Yu, W. Zhang, Y. Gao, Y. Chen, K. Ma, J. Ye, R. Shen, Y. Yang, Mater. Res. Bull. 97, 483 (2018)CrossRefGoogle Scholar
  55. 55.
    S.G. Hosseini, S.J.H. Toloti, K. Babaei, A. Ghavi, J. Therm. Anal. Calorim. 124, 1243 (2016)CrossRefGoogle Scholar
  56. 56.
    Y. Zhang, C. Meng, J. Alloys Compd. 674, 259 (2016)CrossRefGoogle Scholar
  57. 57.
    Y. Zongxue, C. Lifen, L. Lude, Y. Xujie, W. Xin, Chin. J. Catal. 30, 19 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations