Advertisement

Synthesis and Characterizations of s-Triazine Polymeric Complexes Including Epoxy Groups: Investigation of Their Magnetic and Thermal Properties

  • Oguzhan Tekin
  • Saban UysalEmail author
Article
  • 14 Downloads

Abstract

We aimed to synthesize and characterize novel salen/salophen capped polymeric complexes including oxirane groups. For this purpose, we used 2,4,6-trichloro-1,3,5-triazine (I) as starting material. 2,4-dichloro,6-(3,4-dihydroxyphenylethylamino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent (I) and an equivalent dopamine. 2-(3,4-bis(oxiran-2-ylmethoxy)phenethyl)amine,4,6-dichloro-1,3,5-triazin (III) was synthesized by the reaction of two equivalents of epichlorohydrin and an equivalent of (II). [(Salen/Salophen) (Cr(III)/Fe(III))] capped complexes of (III) were synthesized by reaction of the reactants, codded as IV, V, VI and VII. Then, these monomeric complexes were polymerized by using ethylenediamine and o-phenylenediamine in 1,4-dioxane media, codded as VIII, IX, X, XI, XII, XIII, XIV and XV. II and III, monomeric and polymeric complexes were characterized by means of elemental analyses, 1H-NMR (spectrometry) and 13C-NMR (spectrometry), FT-IR spectrometry, ESI-MS and thermal analyses. Metal content in the prepared polymeric complexes was determined by inductively coupled plasma atomic emission spectrophotometer (ICPAES). We also synthesized novel polymeric complexes and investigated their effects on magnetic behaviors of [Cr(III)/Fe(III)(salen/salophen)] capped complexes. The complexes were determined to be low-spin distorted octahedral Fe(III) and distorted octahedral Cr(III).

Keywords

s-Triazine Salen Salophen Epichlorohydrin Oxirane Epoxy 

Notes

Acknowledgements

This study was produced from Oguzhan Tekin’s M. Sc. Thesis. The authors are grateful to Karabuk University Coordinator of Scientific Research Projects (Project No: KBÜBAP-17-YL-175) for financial support in order to carry out this research work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10904_2019_1132_MOESM1_ESM.docx (436 kb)
Supplementary material 1 (DOCX 435 KB)

References

  1. 1.
    M. Albrecht, Angew. Chem. Int. Ed. 38(23), 3463–3465 (1999)CrossRefGoogle Scholar
  2. 2.
    F.A. Cotton, C. Lin, C.A. Murillo, Acc. Chem. Res. 35(7), 565–573 (2002)CrossRefGoogle Scholar
  3. 3.
    J.R. Galan-Mascaros, J.M. Clemente-Juan, K.R. Dunbar, J. Chem. Soc. Dalton Trans. 2710–2713 (2002)Google Scholar
  4. 4.
    R. Wietzke, M. Mazzanti, J.M. Latour, J. Percaut. Inorg. Chem. 38, 3581–3585 (1999)CrossRefGoogle Scholar
  5. 5.
    S.M. Soliman, A. El-Faham, S.E. Elsilk, M. Farooq, Inorg. Chim. Acta 479, 275–285 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Chu, W. Chen, G. Su, Y. Song, Inorg. Chim. Acta 376(1), 350–357 (2011)CrossRefGoogle Scholar
  7. 7.
    V.C. Diaz, G.I. Izquierdo, Polyhedron 18(10), 1479–1484 (1999)CrossRefGoogle Scholar
  8. 8.
    L.M. Harwood, M.J. Hudson, M.G. Drew, F.W. Lewis, J. Am. Chem. Soc. 133(33), 13093–13102 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Shanmugakala, P. Tharmaraj, C.D. Sheela, J. Mol. Struct. 1076, 606–613 (2014)CrossRefGoogle Scholar
  10. 10.
    N.C. Desai, A.H. Makwana, R.D. Senta, J. Saudi Chem. Soc. 20(6), 686–694 (2016)CrossRefGoogle Scholar
  11. 11.
    T. Vilaivan, N. Saesaengseerung, D. Jarprung, S. Kamchonwongpaisan, W. Sirawaraporn, Y. Yuthavong, Bioorg. Med. Chem. 11(2), 217–224 (2003)CrossRefGoogle Scholar
  12. 12.
    T. Lübbers, P. Angehrn, H. Gmünder, S. Herzig, J. Kulhanek, Bioorg. Med. Chem. Lett. 10(8), 821–826 (2000)CrossRefGoogle Scholar
  13. 13.
    J.N. Sangshetti, D.B. Shinde, Bioorg. Med. Chem. Lett. 20(2), 742–745 (2010)CrossRefGoogle Scholar
  14. 14.
    W. Lv, B. Banerjee, K.L. Molland, M.N. Seleem, A. Ghafoor, M.I. Hamed, B. Wan, S.G. Franzblau, A.D. Mesecar, M. Cushman, Bioorg. Med. Chem. 22, 406–418 (2014)CrossRefGoogle Scholar
  15. 15.
    K.K. Bansal, D. Kakde, U. Gupta, N.K. Jain, J. Nanosci. Nanotechnol. 10(12), 8395–8404 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Shanmugakala, P. Tharmaraj, C.D. Sheela, C. Anitha, Int. J. Inorg. Chem. 2012, 1–7 (2012)CrossRefGoogle Scholar
  17. 17.
    N.S. Mewada, D.R. Shah, H.P. Lakum, K.H. Chikhalia, J. Assoc. Arab Univ. Basic Appl. Sci. 20, 8–18 (2016)Google Scholar
  18. 18.
    M. Easson, B. Condon, M. Yoshioka-Tarver, S. Childress, R. Slopek, J. Bland, T.M. Nguyen, S.C. Chang, E. Graves, AATCC Rev. 11, 60–66 (2011)Google Scholar
  19. 19.
    V.V. Nedel’ko, A.V. Shastin, B.L. Korsunskii, N.V. Chukanov, T.S. Larikova, A.I. Kazakov, Russ. Chem. Bull. 54, 1710 (2005)CrossRefGoogle Scholar
  20. 20.
    A. El-Faham, K.A. Dahlous, Z.A. AL-Othman, H.A. Al-Lohedan, G.A. El-Mahdy, Molecules 21, 436–447 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Horacek, S. Pieh, Polym. Int. 49(10), 1106–1114 (2000)CrossRefGoogle Scholar
  22. 22.
    S. Demirci, A. Dogan, N.B. Turkmen, D. Telci, A.A. Rizvanov, F. Sahin, Biomed. Pharmacother. 86, 492–501 (2017)CrossRefGoogle Scholar
  23. 23.
    F. Lu, D. Astruc, Coord. Chem. Rev. 356, 147–164 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Naz, S. Arun, S.S. Narvi, M.S. Alam, A. Singh, P. Bhartiya, P.K. Dutta, Int. J. Biol. Macromol. 110, 215–226 (2018)CrossRefGoogle Scholar
  25. 25.
    A.A.S. Al-Hamdani, A.M. Balkhi, A. Falah, S.A. Shaker, J. Saudi Chem. Soc. 20, 487–501 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Wu, L. Chen, T. Fu, H. Zhao, D. Guo, X. Wang, Y. Wang, Chem. Eng. J. 336, 622–632 (2018)CrossRefGoogle Scholar
  27. 27.
    K. Agathian, L. Kannammal, B. Meenarathi, S. Kailash, R. Anbarasan, Int. J. Biol. Macromol. 107, 1102–1112 (2018)CrossRefGoogle Scholar
  28. 28.
    I. Gonul, A.Y. Burak, S. Karaca, O. Sahin, S. Serin, Inorg. Chim. Acta 477, 75–83 (2018)CrossRefGoogle Scholar
  29. 29.
    S. Roy, T.K. Mondal, A. Layek, R. Saha, C. Sinha, Inorg. Chim. Acta 469, 523–535 (2018)CrossRefGoogle Scholar
  30. 30.
    D. Shohamy, C.E. Myers, S. Grossman, J. Sage, M.A. Gluck, Behav. Brain Res. 156, 191–199 (2005)CrossRefGoogle Scholar
  31. 31.
    D.P. Hoog, P. Gamez, W.L. Dressen, J. Reedijk, Tetrahedron Lett. 43(38), 6783–6786 (2002)CrossRefGoogle Scholar
  32. 32.
    H.S. Patel, V.C. Patel, Eur. Polym. J. 37(11), 2263–2271 (2001)CrossRefGoogle Scholar
  33. 33.
    J. Mahler, G. Rafler, Opt. Mater. 12, 363–368 (1999)CrossRefGoogle Scholar
  34. 34.
    O. Nuyken, C. Scherer, A. Baindl, A.R. Brenner, U. Dahn, R. Gärtner, S. Kaiser-Röhrich, R. Kollefrath, P. Matusche, B. Voit, Prog. Polym. Sci. 22(1), 93–183 (1997)CrossRefGoogle Scholar
  35. 35.
    H. Zhong, E. Xu, D. Zeng, J. Du, J. Sun, S. Ren, B. Jiang, Q. Fang, Org. Lett. 10, 709–712 (2007)CrossRefGoogle Scholar
  36. 36.
    L. Xia, Y. Xue, K. Xiong, C. Cai, Z. Peng, Y. Wu, Y. Li, J. Miao, D. Chen, Z. Hu, J. Wang, X. Peng, Y. Mo, L. Hou, ACS Appl. Mater. Interfaces 7, 26405–26413 (2015)CrossRefGoogle Scholar
  37. 37.
    H. Tanaka, K. Shizu, H. Nakanotani, C. Adachi, Chem. Mater. 25, 3766–3771 (2013)CrossRefGoogle Scholar
  38. 38.
    R. Gomes, P. Bhanja, A. Bhaumik, Chem. Commun. 51, 10050–10053 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Hug, L. Stegbauer, H. Oh, M. Hirscher, B.V. Lotsch, Chem. Mater. 27, 8001–8010 (2015)CrossRefGoogle Scholar
  40. 40.
    P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A. Thomas, Chem. Mater. 25, 1542–1548 (2013)CrossRefGoogle Scholar
  41. 41.
    J. Zhou, J. Wang, K. Jin, J. Sun, Q. Fang, Polymer 102, 301–307 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Schley, P. Lönnecke, E. Hey-Hawkins, J Inorg Organomet Polym 694, 2480–2487 (2009)CrossRefGoogle Scholar
  43. 43.
    K. Srinivasan, P. Michaud, J.K. Kochi, J. Am. Chem. Soc. 108, 2309–2320 (1986)CrossRefGoogle Scholar
  44. 44.
    W. Zhang, J.L. Loebach, R.W. Scott, E.N. Jacobsen, J. Am. Chem. Soc. 112(7), 2801–2803 (1990)CrossRefGoogle Scholar
  45. 45.
    R. Irie, K. Noda, Y. Ito, M. Matsumoto, T. Katsuki, Tetrahedron Lett. 31, 7345–7348 (1990)CrossRefGoogle Scholar
  46. 46.
    Z.E. Koc, J. Heterocycl. Chem. 48, 769 (2011)CrossRefGoogle Scholar
  47. 47.
    C. Shiju, D. Arish, N. Bhuvanesh, S. Kumaresan, Spectrochim. Acta A 145, 213–222 (2015)CrossRefGoogle Scholar
  48. 48.
    S. Uysal, H.I. Ucan, J. Inc. Phenom. Macrocycl. Chem. 65(3), 299–304 (2009)CrossRefGoogle Scholar
  49. 49.
    Z.E. Koc, S. Uysal, J. Inorg. Organomet. Polym. 21, 400–406 (2011)CrossRefGoogle Scholar
  50. 50.
    Z.E. Koc, H.I. Ucan, Transit. Metal Chem. 32, 597–602 (2007)CrossRefGoogle Scholar
  51. 51.
    Z.E. Koc, H.I. Ucan, J. Macromol. Sci. 45(12), 1072–1077 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Uysal, M. Er, H. Tahtaci, Synth. Commun. 46(22), 1820–1832 (2016)CrossRefGoogle Scholar
  53. 53.
    S. Uysal, Z.E. Koc, J. Hazard. Mater. 175(1–3), 532–539 (2010)CrossRefGoogle Scholar
  54. 54.
    Z.E. Koc, S. Uysal, Helv. Chim. Acta 93(5), 910–919 (2010)CrossRefGoogle Scholar
  55. 55.
    K.B. Hansen, J.L. Leighton, E.N. Jacobsen, J. Am. Chem. Soc. 118, 10924–10925 (1996)CrossRefGoogle Scholar
  56. 56.
    M. Alvaro, C. Baleizao, E. Carbonell, M. El Ghoul, H. García, B. Giganteb, Tetrahedron 61, 12131–12139 (2005)CrossRefGoogle Scholar
  57. 57.
    P. Kopel, Z. Sindelar, R. Klicka, Transit. Metal Chem. 23(2), 139–142 (1998)CrossRefGoogle Scholar
  58. 58.
    Q. Fang, X. Ding, X. Wu, L. Jiang, Polymer 42, 7595–7602 (2001)CrossRefGoogle Scholar
  59. 59.
    S. Uysal, H.I. Ucan, J. Incl. Phenom. Macrocycl. Chem. 68(1), 165–173 (2010)CrossRefGoogle Scholar
  60. 60.
    S. Uysal, H.I. Ucan, J Inorg Organomet Polym. 20(4), 720–726 (2010)CrossRefGoogle Scholar
  61. 61.
    S. Uysal, J. Incl. Phenom. Macrocycl. Chem. 76(1–2), 223–230 (2013)CrossRefGoogle Scholar
  62. 62.
    S. Celikbilek, Z.E. Koc, J. Mol. Struct. 1065–1066, 205–209 (2014)CrossRefGoogle Scholar
  63. 63.
    S. Uysal, Z.E. Koc, J. Mol. Struct. 1109, 119–126 (2016)CrossRefGoogle Scholar
  64. 64.
    S. Uysal, Z.E. Koc, J. Mol. Struct. 1165, 14–22 (2018)CrossRefGoogle Scholar
  65. 65.
    S. Uysal, Z.E. Koc, S. Celikbilek, H.I. Ucan, Synth. Commun. 42(7), 1033–1104 (2012)CrossRefGoogle Scholar
  66. 66.
    S. Uysal, H.I. Ucan, J. Incl, Phenom. Macrocycl. Chem. 65(3), 403–409 (2009)CrossRefGoogle Scholar
  67. 67.
    S. Uysal, A.N. Kursunlu, J Inorg Organomet Polym 21(2), 291–296 (2011)CrossRefGoogle Scholar
  68. 68.
    B. Isci, S. Uysal, J. Incl, Phenom. Macrocycl. Chem. 92, 281–299 (2018)CrossRefGoogle Scholar
  69. 69.
    A.B.P. Lever, J. Chem. Educ. 51, 612–616 (1974).  https://doi.org/10.1021/ed051p612 CrossRefGoogle Scholar
  70. 70.
    S.S. Mahapatra, N. Karak, Polym. Degrad. Stab. 92(6), 947–955 (2007)CrossRefGoogle Scholar
  71. 71.
    C. Gao, D. Yan, Prog. Polym. Sci. 29, 183–275 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Polymer Engineering, Institute of Natural and Applied SciencesUniversity of KarabukKarabukTurkey
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of KarabukKarabukTurkey

Personalised recommendations