Advertisement

In-Situ Preparation and Characterization of Aconitic Acid Capped Fe3O4 Nanoparticle by Using Citric Acid as a Reducing Agent

  • A. A. Gadgeel
  • S. T. MhaskeEmail author
  • C. Duerr
  • K. L. Liu
Article
  • 17 Downloads

Abstract

Magnetic nanoparticles (MNPs) of iron were prepared in a single stage reaction with citric acid through a reduction process. Iron (III) acetylacetonate Fe (acac)3 were used as precursors for the synthesis of Fe3O4 nanoparticles. Elemental analyses of the produced magnetic Fe3O4 particle was carried out by energy dispersive analysis of X-ray (EDAX) method. The particle size of nanoparticle was analyzed by transmission electron microscopy and XRD data using Scherrer’s equation and Williamson-Hall plot. Magnetic saturation of the nanoparticles was determined through vibrating sample magnetometer (VSM). XRD and selective area electron diffraction (SAED) pattern confirm the formation of well-crystallized Fe3O4 particles. Transmission electron microscopy confirms the formation of nanoparticles with the average particle size in the range of 18–34 nm. The average size of the particles decreases with an increased annealing temperature of the gel. Thermal properties of the formed particle were studied through thermogravimetric technique (TGA).

Graphical Abstract

Keywords

Energy dispersive X-ray Fe3O4 nanoparticle SAED Vibrating sample magnetometer 

Notes

Acknowledgements

All the authors are thankful to Evonik Industries AG for sponsoring this research and providing valuable input in analyzing results. Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay EDAX, TGA, and TEM analysis of our samples. The authors are grateful to Central Instruments Facility (CIF), IIT Guwahati for magnetic saturation analysis.

References

  1. 1.
    H. Zhang, J. Xia, X. Pang, M. Zhao, B. Wang, L. Yang et al., Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 72, 537–543 (2017).  https://doi.org/10.1016/j.msec.2016.12.116 CrossRefGoogle Scholar
  2. 2.
    T. Kang, F. Li, S. Baik, W. Shao, D. Ling, T. Hyeon, Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 136, 98–114 (2017).  https://doi.org/10.1016/j.biomaterials.2017.05.013 CrossRefGoogle Scholar
  3. 3.
    F. Barahuie, D. Dorniani, B. Saifullah, S. Gothai, M.Z. Hussein, A.K. Pandurangan et al., Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int. J. Nanomed. 12, 2361–2372 (2017).  https://doi.org/10.2147/IJN.S1262 45CrossRefGoogle Scholar
  4. 4.
    S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21, 16819 (2011).  https://doi.org/10.1039/c1jm11845e CrossRefGoogle Scholar
  5. 5.
    I. Monaco, F. Arena, S. Biffi, E. Locatelli, B. Bortot, F. La Cava et al., Synthesis of lipophilic core-shell Fe3O4-SiO2-Au nanoparticles and polymeric entrapment into nanomicelles: a novel nanosystem for in vivo active targeting and magnetic resonance-photoacoustic dual imaging. Bioconjug. Chem. 28, 1382–1390 (2017).  https://doi.org/10.1021/acs.bioconjchem.7b00076 CrossRefGoogle Scholar
  6. 6.
    J. Estelrich, M.J. Sanchez-Martin, M.A. Busquets, Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomed. 10, 1727–1741 (2015).  https://doi.org/10.2147/IJN.S76501 Google Scholar
  7. 7.
    F.M. Ferguson, A.P. Khandhar, S.J. Kemp, H. Arami, E.U. Saritas, L.R. Croft, J. Konkle, P.W. Goodwill, A. Halkola, J. Rahmer, J. Borgert, Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans. Med. Imaging. 34, 7 (2015).  https://doi.org/10.1109/TMI.2014.2375065 CrossRefGoogle Scholar
  8. 8.
    M. Iv, N. Telischak, D. Feng, S.J. Holdsworth, K.W. Yeom, H.E. Daldrup-Link, Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 10, 993–1018 (2015).  https://doi.org/10.2217/NNM.14.203 CrossRefGoogle Scholar
  9. 9.
    M.B. Gawande, Y. Monga, R. Zboril, R.K. Sharma, Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 88, 118–143 (2015).  https://doi.org/10.1016/j.ccr.2015.01.001 CrossRefGoogle Scholar
  10. 10.
    L. Yu, G. Hao, J. Gu, S. Zhou, N. Zhang, W. Jiang, Fe 3 O 4 /PS magnetic nanoparticles: synthesis, characterization and their application as sorbents of oil from waste water. J. Magn. Magn. Mater. 394, 14–21 (2015).  https://doi.org/10.1016/j.jmmm.2015.06.045 CrossRefGoogle Scholar
  11. 11.
    J.-Z. He, X.-X. Wang, Y.-L. Zhang, M.-S. Cao, Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 4, 7130–7140 (2016).  https://doi.org/10.1039/c6tc02020h CrossRefGoogle Scholar
  12. 12.
    J. Renteria, S. Legedza, R. Salgado, M.P. Balandin, S. Ramirez, M. Saadah et al., Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater. Des. 88, 214–221 (2015).  https://doi.org/10.1016/j.matdes.2015.08.135 CrossRefGoogle Scholar
  13. 13.
    L. Li, P. Gao, S. Gai, F. He, Y. Chen, M. Zhang et al., “Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application” Electrochim. Acta 190, 566–573 (2016).  https://doi.org/10.1016/j.electacta.2015.12.137 CrossRefGoogle Scholar
  14. 14.
    S. Chandra, M.D. Patel, H. Lang, D. Bahadur, Dendrimer-functionalized magnetic nanoparticles: a new electrode material for electrochemical energy storage devices. J. Power Sources 280, 217–226 (2015).  https://doi.org/10.1016/j.jpowsour.2015.01.075 CrossRefGoogle Scholar
  15. 15.
    X. Qin, H. Zhang, J. Wu, X. Chu, Y.-B. He, C. Han et al., Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon 87, 347–356 (2015).  https://doi.org/10.1016/j.carbon.2015.02.044 CrossRefGoogle Scholar
  16. 16.
    T. Sugomoto, Y. Wang, Mechanism of the shape and structure control of monodispersed a-Fe2O3 particles by sulfate ions J. Colloid Interface Sci. 207, 137–149 (1998).  https://doi.org/10.1006/jcis.1998.5741 CrossRefGoogle Scholar
  17. 17.
    A.K. Singh, O.N. Srivastava, K. Singh, Shape and size-dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine. Nanoscale Res. Lett. 12, 298 (2017).  https://doi.org/10.1186/s11671-017-2039-3 CrossRefGoogle Scholar
  18. 18.
    K. Jagiello, B. Chomicz, A. Avramopoulos, A. Gajewicz, A. Mikolajczyk, P. Bonifassi, Size-dependent electronic properties of nanomaterials: how this novel class of nanodescriptors supposed to be calculated Struct. Chem. 28 (2016) 635–643,  https://doi.org/10.1007/s11224-016-0838-2 CrossRefGoogle Scholar
  19. 19.
    W.C.P. Liu, H. Zeng, Fabrication and size-dependent optical properties of FeO nanoparticles induced by laser ablation in a liquid medium. J. Phys. Chem. C 112, 3261–3266 (2008).  https://doi.org/10.1021/jp709714a CrossRefGoogle Scholar
  20. 20.
    S. Kanagasubbulakshmi, K. Kadirvelu, Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Defence Life Sci. J. 2, 422 (2017).  https://doi.org/10.14429/dlsj.2.12277 CrossRefGoogle Scholar
  21. 21.
    P. Karpagavinayagam, C. Vedhi, Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum 160, 286–292 (2019).  https://doi.org/10.1016/j.vacuum.2018.11.043 CrossRefGoogle Scholar
  22. 22.
    P. Singh, Y.J. Kim, D. Zhang, D.C. Yang, Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016).  https://doi.org/10.1016/j.tibtech.2016.02.006 CrossRefGoogle Scholar
  23. 23.
    D.A. Demirezen, Y.S. Yildiz, S. Yilmaz, D. Demirezen Yilmaz, Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J. Biosci. Bioeng. 127, 241–245 (2018).  https://doi.org/10.1016/j.jbiosc.2018.07.024 CrossRefGoogle Scholar
  24. 24.
    S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar, A. Pugazhendhi, Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J. Photochem. Photobiol. B 192, 74–82 (2018).  https://doi.org/10.1016/j.jphotobiol.2018.12.025 CrossRefGoogle Scholar
  25. 25.
    Y. Liu, X. Jin, Z. Chen, The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI). Sci. Total Environ. 627, 470–479 (2018).  https://doi.org/10.1016/j.scitotenv.2018.01.241 CrossRefGoogle Scholar
  26. 26.
    F. Fajaroh, H. Setyawan, W. Widiyastuti, S. Winardi, Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv. Powder Technol. 23, 328–333 (2012).  https://doi.org/10.1016/j.apt.2011.04.007 CrossRefGoogle Scholar
  27. 27.
    D. Nga, V. Hung, C. Thanh, N. Chuc, L. Thanh, T. Lam, P. Nguyen, N.Loc,B. Piro, V. Thi, In-situ electrochemically deposited Fe3O4 nanoparticles onto graphene nanosheets as amperometric amplifier for electrochemical biosensing applications. Sens. Actuat. B 283, 52–60 (2019).  https://doi.org/10.1016/j.snb.2018.11.152 CrossRefGoogle Scholar
  28. 28.
    M. Elrouby, A.M. Abdel-Mawgoud, R.A. El-Rahman, Synthesis of iron oxides nanoparticles with very high saturation magnetization form TEA-Fe(III) complex via electrochemical deposition for supercapacitor applications. J. Mol. Struct. 1147, 84–95 (2017).  https://doi.org/10.1016/j.molstruc.2017.06.092 CrossRefGoogle Scholar
  29. 29.
    E. Mazarío, A. Mayoral, E. Salas, N. Menéndez, P. Herrasti, J. Sánchez-Marcos, Synthesis and characterization of manganese ferrite nanoparticles obtained by electrochemical/chemical method. Mater. Des. 111, 646–650 (2016).  https://doi.org/10.1016/j.matdes.2016.09.031 CrossRefGoogle Scholar
  30. 30.
    S. Mosivand, I. Kazeminezhad, A novel synthesis method for manganese ferrite nanopowders: the effect of manganese salt as inorganic additive in electrosynthesis cell. Ceram. Int. 41, 8637–8642 (2015).  https://doi.org/10.1016/j.ceramint.2015.03.074 CrossRefGoogle Scholar
  31. 31.
    I. Morjan, R. Alexandrescu, F. Dumitrache, R. Birjega, C. Fleaca, I. Soare et al., Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties. J. Nanosci. Nanotechnol. 10, 1223–1234 (2010).  https://doi.org/10.1166/jnn.2010.1863 CrossRefGoogle Scholar
  32. 32.
    G. Schinteie, V. Kuncser, P. Palade, F. Dumitrache, R. Alexandrescu, I. Morjan et al., Magnetic properties of iron–carbon nanocomposites obtained by laser pyrolysis in specific configurations. J. Alloys Compd. 564, 27–34 (2013).  https://doi.org/10.1016/j.jallcom.2013.02.126 CrossRefGoogle Scholar
  33. 33.
    C.T. Fleaca, F. Dumitrache, I. Morjan, R. Alexandrescu, I. Sandu, C. Luculescu et al., Fe-inserted and shell-shaped carbon nanoparticles by cluster-mediated laser pyrolysis. Appl. Surf. Sci. 258, 9394–9398 (2012).  https://doi.org/10.1016/j.apsusc.2012.04.025 CrossRefGoogle Scholar
  34. 34.
    F. Dumitrache, I. Morjan, C. Fleaca, A. Badoi, G. Manda, S. Pop et al., Highly magnetic Fe2O3 nanoparticles synthesized by laser pyrolysis used for biological and heat transfer applications. Appl. Surf. Sci. 336, 297–303 (2015).  https://doi.org/10.1016/j.apsusc.2014.12.098 CrossRefGoogle Scholar
  35. 35.
    F. Dumitrache, I. Morjan, C. Fleaca, R. Birjega, E. Vasile, V. Kuncser, Parametric studies on iron–carbon composite nanoparticles synthesized by laser pyrolysis for increased passivation and high iron content. Appl. Surf. Sci. 257, 5265–5269 (2011).  https://doi.org/10.1016/j.apsusc.2010.11.069 CrossRefGoogle Scholar
  36. 36.
    Y. Luo, J. Luo, J. Jiang, W. Zhou, H. Yang, X. Qi, Seed-assisted synthesis of highly ordered TiO2-α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 5, 6559 (2012).  https://doi.org/10.1039/c2ee03396h CrossRefGoogle Scholar
  37. 37.
    A.D. Abid, M. Kanematsu, T.M. Young, I.M. Kennedy, Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states Aerosol. Sci. Technol. 47, 169–176 (2013).  https://doi.org/10.1080/02786826.2012.735380 CrossRefGoogle Scholar
  38. 38.
    M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, K. Balamurugan, Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications Spectrochim. Acta. A Mol. Biomol. Spectrosc. 135, 536–539 (2015).  https://doi.org/10.1039/c2ee03396h CrossRefGoogle Scholar
  39. 39.
    M.I. Khalil, Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab. J. Chem. 8, 279–284 (2015).  https://doi.org/10.1016/j.arabjc.2015.02.008 CrossRefGoogle Scholar
  40. 40.
    P. Jolivet, C. Chanéac, Synthesis of iron oxide-based magnetic nanomaterials and composites. C. R. Chim. 5, 659–664 (2002).  https://doi.org/10.1016/s1631-0748(02)01422-4 CrossRefGoogle Scholar
  41. 41.
    E. Darezereshki, A.K. Darban, M. Abdollahy, A. Jamshidi, Synthesis of magnetite nanoparticles from iron ore tailings using a novel reduction-precipitation method J. Alloys Compds. 749, 336–343 (2018).  https://doi.org/10.1016/j.jallcom.2018.03.278 CrossRefGoogle Scholar
  42. 42.
    K. Huang, S. Ehrmas, Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir 23, 1419–1426 (2007).  https://doi.org/10.1021/la0618364 CrossRefGoogle Scholar
  43. 43.
    R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1248 (1981).  https://doi.org/10.1109/tmag.1981.1061188 CrossRefGoogle Scholar
  44. 44.
    R. Sakthivel, N. Vasumathi, D. Sahu, B. Mishra, Synthesis of magnetite powder from iron ore tailings. Powder Technol. 201, 187–190 (2010).  https://doi.org/10.1016/j.powtec.2010.03.005 CrossRefGoogle Scholar
  45. 45.
    T. Ahn, J.H. Kim, H.-M. Yang, J.W. Lee, J.-D. Kim, Formation pathways of magnetite nanoparticles by coprecipitation method J. Phys. Chem. A 116, 6069–6076 (2012).  https://doi.org/10.1021/jp211843g Google Scholar
  46. 46.
    K.K. Kefeni, T.M. Msagati, B.B. Mamba, Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage J. Chem. Eng. 276, 222–231 (2015).  https://doi.org/10.1016/j.cej.2015.04.066 CrossRefGoogle Scholar
  47. 47.
    C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernández-García, Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem. Mater. 24, 1496–1504 (2012)  https://doi.org/10.1021/cm300301c CrossRefGoogle Scholar
  48. 48.
    S. Mondini, C. Drago, A.M. Ferretti, A. Puglisi, A. Ponti, Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant. Nanotechnology 24, 1–15 (2013). https://doi.org/stacks.iop.org/Nano/24/105702
  49. 49.
    A.K. Bajpai, R. Gupta, Synthesis and characterization of magnetite (Fe3O4)-polyvinyl alcohol-based nanocomposites and study of superparamagnetism. Polym. Compos. 31, 245–255 (2009)  https://doi.org/10.1002/pc.20793 Google Scholar
  50. 50.
    L. Zhang, R. He, H.-C. Gu, Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006).  https://doi.org/10.1016/j.apsusc.2006.05.023 CrossRefGoogle Scholar
  51. 51.
    C.L. Lin, C.F. Lee, W.Y. Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J. Colloid Interface Sci. 291, 411–420 (2005).  https://doi.org/10.1016/j.jcis.2005.05.023 CrossRefGoogle Scholar
  52. 52.
    P. Dallas, A.B. Bourlinos, D. Niarchos, D. Petridis, Synthesis of tunable sized capped magnetic iron oxide nanoparticles highly soluble in organic solvents J. Mater. Sci. 42, 4996–5002 (2007).  https://doi.org/10.1007/s10853-006-0610-x CrossRefGoogle Scholar
  53. 53.
    R. Pegu, K.J. Majumdar, D.J. Talukdar, S. Pratihar, Oxalate capped iron nanomaterial: from methylene blue degradation to bis(indolyl)methane synthesis. RSC Adv. 4, 33446–33456 (2014).  https://doi.org/10.1039/c4ra04214j CrossRefGoogle Scholar
  54. 54.
    M. Aslam, T. Sun, T. Meade, V. Dravid, Synthesis of amine-stabilized aqueous colloidal iron oxide nanoparticles Cryst. Growt Des. 7, 471–475 (2007).  https://doi.org/10.1021/cg060656p CrossRefGoogle Scholar
  55. 55.
    A.K. Zak, W.H. Abd. M.E. Majid, Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011).  https://doi.org/10.1016/j.solidstatesciences.2010.11.0 CrossRefGoogle Scholar
  56. 56.
    S.J. Elham Cheraghipour, A.R. Mehdizadeh, Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomed Sci Eng. 5, 715–719 (2012).  https://doi.org/10.4236/jbise.2012.512089 CrossRefGoogle Scholar
  57. 57.
    H. Cao, Y. Zheng, J. Zhou, W. Wang, A. Pandit, A novel hyperbranched polyester made from aconitic acid (B3) and di(ethylene glycol) (A2). Polymer Int. 60, 630–634 (2011).  https://doi.org/10.1002/pi.2993 CrossRefGoogle Scholar
  58. 58.
    S.S.K.D. Kim, Y.-H. Choa, H.T. Kim, Formation and surface modification of Fe3O4 nanoparticles by Co-precipitation and sol-gel method. J. Ind. Eng. Chem. 13, 1137–1141 (2007)Google Scholar
  59. 59.
    T. Togashi, T. Naka, S. Asahina, K. Sato, S. Takami, T. Adschiri, Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. Dalton Trans. 5, 1073–1078 (2011).  https://doi.org/10.1039/C0DT01280G CrossRefGoogle Scholar
  60. 60.
    A. Bordbar, R. Amiri, E. Ranjbakhsh, M. Abbasi, A.R. Khosropour, Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol. Res. Int. 1, 1–6 (2014).  https://doi.org/10.1155/2014/705068 CrossRefGoogle Scholar
  61. 61.
    E. Kılınç, Fullerene C 60 functionalized γ-Fe 2 O 3 magnetic nanoparticle: synthesis, characterization, and biomedical applications. Artif. Cells Nanomed. Biotechnol. 1, 1–7 (2014).  https://doi.org/10.3109/21691401.2014.948182 Google Scholar
  62. 62.
    Y.P.V.D. Mote, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 1–8 (2012).  https://doi.org/10.1186/2251-7235-6-6 CrossRefGoogle Scholar
  63. 63.
    M. Raz, F. Moztarzadeh, A.A. Hamedani, M. Ashuri, M. Tahriri, Controlled synthesis, characterization and magnetic properties of magnetite (Fe3O4) nanoparticles without surfactant under N2 gas at room temperature Key Eng. Mater. 493–494, 746–751 (2011).  https://doi.org/10.4028/www.scientific.net/KEM CrossRefGoogle Scholar
  64. 64.
    S. Majumder, S. Dey, K. Bagani, S.K. Dey, S. Banerjee, S. Kumar, A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4-SiO2 core-shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors. Dalton Trans. 44, 7190–7202 (2015).  https://doi.org/10.1039/C4DT02551B CrossRefGoogle Scholar
  65. 65.
    R.P. Araújo-Neto, E.L. Silva-Freitas, J.F. Carvalho, T.R.F. Pontes, K.L. Silva, I.H.M. Damasceno et al., Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 364, 72–79 (2014).  https://doi.org/10.1016/j.jmmm.2014.04.001 CrossRefGoogle Scholar
  66. 66.
    Y. Hou, J. Yu, S. Gao, Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticlesElectronic supplementary information (ESI) available: size distributions of samples modified with TOPO + PVP, HDA + PVP, and PVP. J. Mater. Chem. 13, 1983–1987 (2003).  https://doi.org/10.1039/b305526d CrossRefGoogle Scholar
  67. 67.
    Z.H. Zhou, J. Wang, X. Liu, H.S.O. Chan, Synthesis of Fe3O4 nanoparticles from emulsions. J. Mater. Chem. 11, 1704–1709 (2001).  https://doi.org/10.1039/b100758k CrossRefGoogle Scholar
  68. 68.
    A.S.S. Gul, S. Bilal, Calculation of activation energy of degradation of polyaniline-dodecylbenzene sulfonic acid salts via TGA. J. Sci. Innov. Res. 2, 673–684 (2013)Google Scholar
  69. 69.
    Y. Atassi, M. Tally, M. Ismail, Synthesis and characterization of chloride doped polyaniline by bulk oxidative chemical polymerization. Doping effect on electrical conductivity. High. Inst. Appl. Sci. Technol. 1–15 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Gadgeel
    • 1
  • S. T. Mhaske
    • 1
    Email author
  • C. Duerr
    • 2
  • K. L. Liu
    • 2
  1. 1.Institute of Chemical TechnologyMumbaiIndia
  2. 2.Evonik (SEA) Pte. LtdSingaporeSingapore

Personalised recommendations