Textile Dyes Degradation from Activated Peroxomonosulphate by Green synthesize Silver Nanoparticles: A Kinetic Study

  • Niharika Nagar
  • Vijay DevraEmail author


The present study reports the green synthesis of Silver nanoparticles (AgNPs) using Azadirachta indica (neem) leaf broth as reducing and capping agent in aqueous solution. The effect of different temperature on the morphology of dispersed AgNPs was studied. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis results indicate that optimum temperature is 30 °C for the synthesis of nanoparticles. Fourier Transform Infrared Spectroscopy (FTIR) studies explain the presence of biomolecules such as terpenoids and flavanones responsible for capping and stabilizing of nanoparticles (NPs). The synthesized AgNPs showed excellent catalytic activity in oxidative degradation of Acid orange 10 (AO10) and Acid orange 52 (AO52) by peroxomonosulphate (PMS) in an aqueous medium. It was observed that the synthesized Nano-catalyst could effectively decompose oxidant to generate sulphate radicals (SRs) and degrade both dyes in aqueous solution by advanced oxidation process (AOP). The maximum degradation efficiency of AO10 reached 84% in 32 min and 90% in 15 min for AO52. The effect of several parameters such as the different concentration of dye, PMS, AgNPs and pH on the degradation efficiency of the process was investigated and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses used for determining intermediates and end products during the degradation process. The AgNPs are expected to be a suitable alternative and play an important role in the fields of catalysis and environmental remediation.


Green synthesis Azadirachta indica (neem) Silver nanoparticles Acid orange 10 Acid orange 52 Oxidative degradation 



This work was supported in part by Department of Science and Technology sponsored FIST Laboratory of our institution for experimental work, MNIT Jaipur for SEM and TEM analysis of synthesis of AgNPs, SAIF (Punjab University, Chandigarh) for LC-MS analysis and University Grants Commission for financial support as JRF (Ref. No: 22/12/2013(ii)EU-V).

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

10904_2019_1127_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 KB)
10904_2019_1127_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 KB)
10904_2019_1127_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 18 KB)
10904_2019_1127_MOESM4_ESM.docx (1.6 mb)
Supplementary material 4 (DOCX 1645 KB)
10904_2019_1127_MOESM5_ESM.doc (13.7 mb)
Supplementary material 5 (DOC 14030 KB)


  1. 1.
    N. Yan, Y. Yuanb, P.J. Dyson, Dalton Trans. 42, 13294–13304 (2013). CrossRefGoogle Scholar
  2. 2.
    R.A. Soomro, A. Nafady, N. Memon, T.H. Sherazi, N.H. Kalwar, Talanta 130, 415–422 (2014). CrossRefGoogle Scholar
  3. 3.
    A. Goel, R. Bhatt, Neetu, Int. J. Res. Chem. Environ. 2, 210–217 (2012)Google Scholar
  4. 4.
    N. Nagar, V. Devra, J. Envion. Chem. Eng. 5, 5793–5800 (2017). CrossRefGoogle Scholar
  5. 5.
    Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi, T. Uruga, J. Biotechnol. 128, 648–653 (2007). CrossRefGoogle Scholar
  6. 6.
    I. Willner, R. Baron, B. Willner, Adv. Mater. 18, 1109–1120 (2006). CrossRefGoogle Scholar
  7. 7.
    B.H. Patel, M.Z. Channiwala, S.B. Chaudhari, A.A. Mandot, J. Envion. Chem. Eng. 4, 2163–2169 (2016). CrossRefGoogle Scholar
  8. 8.
    S. Ahmed, S. Ullah, M. Ahmad, B.L. Swami, S. Ikram, J. Radiat. Res. Appl. Sci. 9, 1–7 (2016). CrossRefGoogle Scholar
  9. 9.
    N. Nagar, S. Jain, P. Kachhawah, V. Devra, Korean J. Chem. Eng. 33, 2990–2997 (2016). CrossRefGoogle Scholar
  10. 10.
    K. Khaldi, M. Hadjel, A. Benyoucef, Surf. Eng. Appl. Electrochem. 54, 194–202 (2018). CrossRefGoogle Scholar
  11. 11.
    A. Belalia, A. Zehhaf, A. Benyoucef, Polym. Sci. Ser, B+ 60, 816–824 (2018). CrossRefGoogle Scholar
  12. 12.
    A. Ahmad, A. Idris, B. Hameed, Desalin. Water Treat. 41, 224–231 (2012). CrossRefGoogle Scholar
  13. 13.
    L. Ahmad, W.A. Harris, B.S. Ooi, J. Teknol. 36, 31–44 (2012). Google Scholar
  14. 14.
    R. Singh, M. Kumar, L. Tashi, H. Khajuria, H.N. Sheikh, Nanochem. Res. 3, 149–159 (2018). Google Scholar
  15. 15.
    Y. Yuan, T. Luo, J. Xu, J. Li, F. Wu, M. Brigante, G. Mailhot, Chem. Eng. J. 362, 183–189 (2019). CrossRefGoogle Scholar
  16. 16.
    F. Zhu, C. Liu, H. Ling, H. Jiang, A. Wu, Li, Appl. Catal. B 242, 238–248 (2019). CrossRefGoogle Scholar
  17. 17.
    S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Chemosphere. 101, 86–92 (2014). CrossRefGoogle Scholar
  18. 18.
    J. Madhavan, P. Maruthamuthu, S. Murugesan, M. Ashokkumar, Appl. Catal. A 368, 35–39 (2009). CrossRefGoogle Scholar
  19. 19.
    J. Madhavan, B. Muthuraaman, S. Murugesan, S. Anandan, P. Maruthamuthu, Sol. Energy Mater.Sol. Cells. 90, 1875–1887 (2006). CrossRefGoogle Scholar
  20. 20.
    J. Zhang, M. Chen, L. Zhu, RSC Adv. 6, 758–768 (2016). CrossRefGoogle Scholar
  21. 21.
    X.Y. Chen, J.W. Chen, X.L. Qiao, D.G. Wang, X.Y. Cai, Appl. Catal. B 80, 116–121 (2008). CrossRefGoogle Scholar
  22. 22.
    Z. Huixuan, L. Huarui, W. Zhongjuan, L. Bo, C. Xiuwen, C. Qingfeng, J. Nanosci. Nanotechnol. 18, 6942–6948 (2018). CrossRefGoogle Scholar
  23. 23.
    A. Meetani, M.A. Rauf, S. Hisaindee, A. Khaleel, A. Alzamly, A. Ahmad, RSC Adv. 1, 490–497 (2011). CrossRefGoogle Scholar
  24. 24.
    A. Obeid, D. Bée, S.B. Talbot, V. Jaafar, S. Dupuis, V. Abramson, M. Cabuil, Welschbillig, J. Colloid Interface Sci. 410, 52–58 (2013). CrossRefGoogle Scholar
  25. 25.
    P. Banerjee, M. Satapathy, A. Mukhopahayay, P. Das, Bioresourc. Bioprocess. 1, 1–10 (2014). CrossRefGoogle Scholar
  26. 26.
    S. Jain, N. Nagar, V. Devra, Int. J. Curr. Eng. Technol. 5, 966–973 (2015). E-ISSN 2277–4106Google Scholar
  27. 27.
    S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid Interface Sci. 275, 496–502 (2004). CrossRefGoogle Scholar
  28. 28.
    S. Hisaindee, M.A. Meetani, M.A. Rauf, Trends Anal. Chem. 49, 31–44 (2013). CrossRefGoogle Scholar
  29. 29.
    J. Zhang, M. Chen, L. Zhu, RSC Adv. 6, 47562–47569 (2016). CrossRefGoogle Scholar
  30. 30.
    T. Chen, Y. Zheng, J.-M. Lin, G. Chen, J. Am. Soc. Mass Spectrom. 19, 997–1003 (2008). CrossRefGoogle Scholar
  31. 31.
    Q. Cai, Y.-Z. Zhu, Z.-S. Wei, J.-Q. Hu, S.-D. Pan, R.-Y. Jin, C.-Y. Xiao, M.-C. Dong, Sci. Total Environ. 580, 966–973 (2017). CrossRefGoogle Scholar
  32. 32.
    N. Nagar, V. Devra, Environ. Technol. Innov. 10, 281–289 (2018). CrossRefGoogle Scholar
  33. 33.
    R. Xiao, Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang, D.D. Dionysiou, Curr. Opin. Chem. Eng. 19, 51–58 (2018). CrossRefGoogle Scholar
  34. 34.
    J. Santhanalakshmi, V. Dhanalakshmi, Indian J. Sci. Technol. 5, 3234–3838. ISSN:0974–6846 (2012)Google Scholar
  35. 35.
    K. Lal, A. Garg, Process Saf. Environ. Prot. (PSEP) 111, 766–774 (2017). CrossRefGoogle Scholar
  36. 36.
    R.J. Dougherty, J. Singh, V.V. Krishnan, J. Mol. Struct. 1131, 196–200 (2017). CrossRefGoogle Scholar
  37. 37.
    C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, J. Hazard. Mater. 276, 452–460 (2014). CrossRefGoogle Scholar
  38. 38.
    C. Zhu, F. Zhu, D.D. Dionysiou, D. Zhou, F. Fang, J. Gao, Water Res. 139, 66–73 (2018). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department Of ChemistryJanki Devi Bajaj Government Girls CollegeKotaIndia

Personalised recommendations