Advertisement

Textile Dyes Degradation from Activated Peroxomonosulphate by Green synthesize Silver Nanoparticles: A Kinetic Study

  • Niharika Nagar
  • Vijay DevraEmail author
Article

Abstract

The present study reports the green synthesis of Silver nanoparticles (AgNPs) using Azadirachta indica (neem) leaf broth as reducing and capping agent in aqueous solution. The effect of different temperature on the morphology of dispersed AgNPs was studied. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis results indicate that optimum temperature is 30 °C for the synthesis of nanoparticles. Fourier Transform Infrared Spectroscopy (FTIR) studies explain the presence of biomolecules such as terpenoids and flavanones responsible for capping and stabilizing of nanoparticles (NPs). The synthesized AgNPs showed excellent catalytic activity in oxidative degradation of Acid orange 10 (AO10) and Acid orange 52 (AO52) by peroxomonosulphate (PMS) in an aqueous medium. It was observed that the synthesized Nano-catalyst could effectively decompose oxidant to generate sulphate radicals (SRs) and degrade both dyes in aqueous solution by advanced oxidation process (AOP). The maximum degradation efficiency of AO10 reached 84% in 32 min and 90% in 15 min for AO52. The effect of several parameters such as the different concentration of dye, PMS, AgNPs and pH on the degradation efficiency of the process was investigated and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses used for determining intermediates and end products during the degradation process. The AgNPs are expected to be a suitable alternative and play an important role in the fields of catalysis and environmental remediation.

Keywords

Green synthesis Azadirachta indica (neem) Silver nanoparticles Acid orange 10 Acid orange 52 Oxidative degradation 

Notes

Acknowledgements

This work was supported in part by Department of Science and Technology sponsored FIST Laboratory of our institution for experimental work, MNIT Jaipur for SEM and TEM analysis of synthesis of AgNPs, SAIF (Punjab University, Chandigarh) for LC-MS analysis and University Grants Commission for financial support as JRF (Ref. No: 22/12/2013(ii)EU-V).

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

10904_2019_1127_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 KB)
10904_2019_1127_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 KB)
10904_2019_1127_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 18 KB)
10904_2019_1127_MOESM4_ESM.docx (1.6 mb)
Supplementary material 4 (DOCX 1645 KB)
10904_2019_1127_MOESM5_ESM.doc (13.7 mb)
Supplementary material 5 (DOC 14030 KB)

References

  1. 1.
    N. Yan, Y. Yuanb, P.J. Dyson, Dalton Trans. 42, 13294–13304 (2013).  https://doi.org/10.1039/C3DT51180D CrossRefGoogle Scholar
  2. 2.
    R.A. Soomro, A. Nafady, N. Memon, T.H. Sherazi, N.H. Kalwar, Talanta 130, 415–422 (2014).  https://doi.org/10.1016/j.talanta.2014.07.023 CrossRefGoogle Scholar
  3. 3.
    A. Goel, R. Bhatt, Neetu, Int. J. Res. Chem. Environ. 2, 210–217 (2012)Google Scholar
  4. 4.
    N. Nagar, V. Devra, J. Envion. Chem. Eng. 5, 5793–5800 (2017).  https://doi.org/10.1016/j.jece.2017.11.014 CrossRefGoogle Scholar
  5. 5.
    Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi, T. Uruga, J. Biotechnol. 128, 648–653 (2007).  https://doi.org/10.1016/j.jbiotec.2006.11.014 CrossRefGoogle Scholar
  6. 6.
    I. Willner, R. Baron, B. Willner, Adv. Mater. 18, 1109–1120 (2006).  https://doi.org/10.1002/adma.200501865 CrossRefGoogle Scholar
  7. 7.
    B.H. Patel, M.Z. Channiwala, S.B. Chaudhari, A.A. Mandot, J. Envion. Chem. Eng. 4, 2163–2169 (2016).  https://doi.org/10.1016/j.jece.2016.03.046 CrossRefGoogle Scholar
  8. 8.
    S. Ahmed, S. Ullah, M. Ahmad, B.L. Swami, S. Ikram, J. Radiat. Res. Appl. Sci. 9, 1–7 (2016).  https://doi.org/10.1016/j.jrras.2015.06.006 CrossRefGoogle Scholar
  9. 9.
    N. Nagar, S. Jain, P. Kachhawah, V. Devra, Korean J. Chem. Eng. 33, 2990–2997 (2016).  https://doi.org/10.1007/s11814-016-0156-9 CrossRefGoogle Scholar
  10. 10.
    K. Khaldi, M. Hadjel, A. Benyoucef, Surf. Eng. Appl. Electrochem. 54, 194–202 (2018).  https://doi.org/10.3103/S1068375518020084 CrossRefGoogle Scholar
  11. 11.
    A. Belalia, A. Zehhaf, A. Benyoucef, Polym. Sci. Ser, B+ 60, 816–824 (2018).  https://doi.org/10.1134/S1560090418060039 CrossRefGoogle Scholar
  12. 12.
    A. Ahmad, A. Idris, B. Hameed, Desalin. Water Treat. 41, 224–231 (2012).  https://doi.org/10.1080/19443994.2012.664717 CrossRefGoogle Scholar
  13. 13.
    L. Ahmad, W.A. Harris, B.S. Ooi, J. Teknol. 36, 31–44 (2012).  https://doi.org/10.11113/jt.v36.581 Google Scholar
  14. 14.
    R. Singh, M. Kumar, L. Tashi, H. Khajuria, H.N. Sheikh, Nanochem. Res. 3, 149–159 (2018).  https://doi.org/10.22036/ncr.2018.02.004 Google Scholar
  15. 15.
    Y. Yuan, T. Luo, J. Xu, J. Li, F. Wu, M. Brigante, G. Mailhot, Chem. Eng. J. 362, 183–189 (2019).  https://doi.org/10.1016/j.cej.2019.01.010 CrossRefGoogle Scholar
  16. 16.
    F. Zhu, C. Liu, H. Ling, H. Jiang, A. Wu, Li, Appl. Catal. B 242, 238–248 (2019).  https://doi.org/10.1016/j.apcatb.2018.09.088 CrossRefGoogle Scholar
  17. 17.
    S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Chemosphere. 101, 86–92 (2014).  https://doi.org/10.1016/j.chemosphere.2013.12.037 CrossRefGoogle Scholar
  18. 18.
    J. Madhavan, P. Maruthamuthu, S. Murugesan, M. Ashokkumar, Appl. Catal. A 368, 35–39 (2009).  https://doi.org/10.1016/j.apcata.2009.08.008 CrossRefGoogle Scholar
  19. 19.
    J. Madhavan, B. Muthuraaman, S. Murugesan, S. Anandan, P. Maruthamuthu, Sol. Energy Mater.Sol. Cells. 90, 1875–1887 (2006).  https://doi.org/10.1016/j.solmat.2005.12.001 CrossRefGoogle Scholar
  20. 20.
    J. Zhang, M. Chen, L. Zhu, RSC Adv. 6, 758–768 (2016).  https://doi.org/10.1039/C5RA22457H CrossRefGoogle Scholar
  21. 21.
    X.Y. Chen, J.W. Chen, X.L. Qiao, D.G. Wang, X.Y. Cai, Appl. Catal. B 80, 116–121 (2008).  https://doi.org/10.1016/j.chemosphere.2006.10.032 CrossRefGoogle Scholar
  22. 22.
    Z. Huixuan, L. Huarui, W. Zhongjuan, L. Bo, C. Xiuwen, C. Qingfeng, J. Nanosci. Nanotechnol. 18, 6942–6948 (2018).  https://doi.org/10.1166/jnn.2018.15800 CrossRefGoogle Scholar
  23. 23.
    A. Meetani, M.A. Rauf, S. Hisaindee, A. Khaleel, A. Alzamly, A. Ahmad, RSC Adv. 1, 490–497 (2011).  https://doi.org/10.1039/C1RA00177A CrossRefGoogle Scholar
  24. 24.
    A. Obeid, D. Bée, S.B. Talbot, V. Jaafar, S. Dupuis, V. Abramson, M. Cabuil, Welschbillig, J. Colloid Interface Sci. 410, 52–58 (2013).  https://doi.org/10.1016/j.jcis.2013.07.057 CrossRefGoogle Scholar
  25. 25.
    P. Banerjee, M. Satapathy, A. Mukhopahayay, P. Das, Bioresourc. Bioprocess. 1, 1–10 (2014).  https://doi.org/10.1186/s40643-014-0003-y CrossRefGoogle Scholar
  26. 26.
    S. Jain, N. Nagar, V. Devra, Int. J. Curr. Eng. Technol. 5, 966–973 (2015). E-ISSN 2277–4106Google Scholar
  27. 27.
    S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid Interface Sci. 275, 496–502 (2004).  https://doi.org/10.1016/j.jcis.2004.03.003 CrossRefGoogle Scholar
  28. 28.
    S. Hisaindee, M.A. Meetani, M.A. Rauf, Trends Anal. Chem. 49, 31–44 (2013).  https://doi.org/10.1016/j.trac.2013.03.011 CrossRefGoogle Scholar
  29. 29.
    J. Zhang, M. Chen, L. Zhu, RSC Adv. 6, 47562–47569 (2016).  https://doi.org/10.1039/C6RA07231C CrossRefGoogle Scholar
  30. 30.
    T. Chen, Y. Zheng, J.-M. Lin, G. Chen, J. Am. Soc. Mass Spectrom. 19, 997–1003 (2008).  https://doi.org/10.1016/j.jasms.2008.03.008 CrossRefGoogle Scholar
  31. 31.
    Q. Cai, Y.-Z. Zhu, Z.-S. Wei, J.-Q. Hu, S.-D. Pan, R.-Y. Jin, C.-Y. Xiao, M.-C. Dong, Sci. Total Environ. 580, 966–973 (2017).  https://doi.org/10.1016/j.scitotenv.2016.12.047 CrossRefGoogle Scholar
  32. 32.
    N. Nagar, V. Devra, Environ. Technol. Innov. 10, 281–289 (2018).  https://doi.org/10.1016/j.eti.2018.03.005 CrossRefGoogle Scholar
  33. 33.
    R. Xiao, Z. Luo, Z. Wei, S. Luo, R. Spinney, W. Yang, D.D. Dionysiou, Curr. Opin. Chem. Eng. 19, 51–58 (2018).  https://doi.org/10.1016/j.coche.2017.12.005 CrossRefGoogle Scholar
  34. 34.
    J. Santhanalakshmi, V. Dhanalakshmi, Indian J. Sci. Technol. 5, 3234–3838. ISSN:0974–6846 (2012)Google Scholar
  35. 35.
    K. Lal, A. Garg, Process Saf. Environ. Prot. (PSEP) 111, 766–774 (2017).  https://doi.org/10.1016/j.psep.2017.09.005 CrossRefGoogle Scholar
  36. 36.
    R.J. Dougherty, J. Singh, V.V. Krishnan, J. Mol. Struct. 1131, 196–200 (2017).  https://doi.org/10.1016/j.molstruc.2016.11.038 CrossRefGoogle Scholar
  37. 37.
    C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, J. Hazard. Mater. 276, 452–460 (2014).  https://doi.org/10.1016/j.jhazmat.2014.05.068 CrossRefGoogle Scholar
  38. 38.
    C. Zhu, F. Zhu, D.D. Dionysiou, D. Zhou, F. Fang, J. Gao, Water Res. 139, 66–73 (2018).  https://doi.org/10.1016/j.watres.2018.03.069 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department Of ChemistryJanki Devi Bajaj Government Girls CollegeKotaIndia

Personalised recommendations