Advertisement

In Situ Measurement of Dielectric Permittivity and Electrical Conductivity of CoCl2/BaCl2 Doped PVDF Composite at Elevated Temperature

  • Anshu Mli GaurEmail author
  • Dinesh Singh Rana
Article
  • 16 Downloads

Abstract

This work describes the synthesis and in situ characterization of polyvinylidene fluoride (PVDF) composite films doped with different weight percentage of CoCl2/BaCl2. The solution casting method was used for fabrication of composite films. XRD and SEM were used to analyse the surface morphology of PVDF composite films which confirms the formation of β and α phase predominately. The XRD spectra confirm the reduction in intensities of some peaks associated with α and β phase’s pre dominantly with the insertion of dopants. Dielectric permittivity and ac conductivity of the PVDF composites were measured at elevated temperature. The frequency dependence of dielectric permittivity and ac conductivity behaviour of PVDF composites with different weight percentage of Co/Ba fillers were investigated. The results reveal that the addition of Co/Ba to the host Polymer PVDF affects the dielectric permittivity and conductivity of PVDF composite. The results further reveals that the annealing influences the overall crystallization process and various phases of doped PVDF composite which in turn may affect the piezoelectric behaviour, which is prerequisite for sensing and actuator application of these PVDF composites. Thus the behaviour of sensors and devices based on doped PVDF composite can be predicted at elevated temperature. This study focused to understand the interaction between PVDF and Co/Ba dopants at elevated temperature.

Keywords

Polyvinylidene fluoride (PVDF) Composite Annealing Dopant Dielectric permittivity Conductivity 

Notes

References

  1. 1.
    Y.C. Li, S.C. Tjong, R.K.Y. Li, Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids. Express Polym. Lett. 5, 6 (2011)Google Scholar
  2. 2.
    H.S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, Volume 2, Conductive Polymers: Synthesis and Electrical Properties (John Wiley and Sons, Chichester, 1997)Google Scholar
  3. 3.
    W. Zhou, Q. Chen, X. Sui, L. Dong, Z. Wang, Enhanced thermal conductivity and dielectric properties of Al/β-SiC w/PVDF composites. Compos. Part A 71, 184–191 (2015)CrossRefGoogle Scholar
  4. 4.
    Z. Wang, W. Zhou, X. Sui, L. Dong, Enhanced dielectric properties and thermal conductivity of Al/CNTs/PVDF ternary composites. J. Reinf. Plast. Compos. 34(14), 1126–1135 (2015)CrossRefGoogle Scholar
  5. 5.
    I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab, N.A. Hakeem, Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine. Physica B 405(1), 94–98 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Mendes, C.M. Firmino, C. Costa, V. Caparrós, Sencadas, S. Lanceros-Méndez, Effect of filler size and concentration on the structure and properties of poly (vinylidene fluoride)/BaTiO3 nanocomposites. J. Mater. Sci. 47(3), 1378–1388 (2012)CrossRefGoogle Scholar
  7. 7.
    A.M. Gaur, D.S. Rana, Effect of CoCl2–BaCl2 fillers on morphology, dielectric constant and conductivity of PVDF composite for pressure sensing application. J. Mater. Sci. 27, 2293–2299 (2016)Google Scholar
  8. 8.
    C.M. Hess, A.R. Rudolph, P.J. Reid, Imaging the effects of annealing on the polymorphic phases of Poly(vinylidene fluoride). J. Phys. Chem. 119(10), 4127–4132 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Shobhneek Kaur, A.L. Kumar, D.P. Singh, Influence of annealing on dielectric and polarization behavior of PVDF thick films. J. Mater. Sci. 28(12), 8391–8396 (2017)Google Scholar
  10. 10.
    Y. Zhu, H. Ye, L. Yang, L. Jiang, L. Zhen, J. Huang, Z. Jiao, J. Sun, Effect of annealing temperatures and time on structural evolution and dielectric properties of PVDF Films, Polym. Polym. Compos. 24(2), 167–172 (2016)Google Scholar
  11. 11.
    S.A. Jawad, J.A. Jundi, H.M. El-Ghanem, S. Sagan, Dielectric behavior of annealed poly (vinylidene fluoride). Int. J. Polym. Mater. 53(4), 365–373 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, Development of novel hybrid materials based on poly (2-aminophenyl disulfide)/silica gel: preparation, characterization and electrochemical studies. J. Mol. Struct. 1150, 580–585 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Chouli, I. Radja, E. Morallon, A. Benyoucef, A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym. Compos. 38, E254–E260 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Daikh, F.Z. Zeggai, A. Bellil, A. Benyoucef, Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: Differences between the synthesized nanocomposites. J. Phys. Chem. Solids 121, 78–84 (2018)CrossRefGoogle Scholar
  15. 15.
    I. Khelifa, A. Belmokhtar, R. Berenguer, A. Benyoucef, E. Morallon, New poly (o-phenylenediamine)/modified-clay nanocomposites: a study on spectral, thermal, morphological and electrochemical characteristics. J. Mol. Struct. (2018)Google Scholar
  16. 16.
    K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J.Therm. Anal. Calorim. 1–12 (2018)Google Scholar
  17. 17.
    R.H. Upadhyay, R.R. Deshmukh, Investigation of dielectric properties of newly prepared β-phase polyvinylidene fluoride barium titanate nanocomposite films. J. Electrostat. 71, 945–950 (2013)CrossRefGoogle Scholar
  18. 18.
    R.N.P. Swagatika Dash, M.N. Choudhary, Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 Connectivity. J. Alloy. Compd. (2017).  https://doi.org/10.1016/j.jallcom.2017.04.310 Google Scholar
  19. 19.
    Y. Jing Fu, M. Hou, Q. Zheng, M. Wei, Zhu, H. Yan, Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. Appl. Mater. Interfaces 7(44), 24480–24491 (2015)CrossRefGoogle Scholar
  20. 20.
    Q. Haiyun Wang, J. Fu, D. Luo, L. Zhao, Luo, W. Li, Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor. Appl. Phys. Lett. 110, 242902 (2017)CrossRefGoogle Scholar
  21. 21.
    A.B. da Silva, M. Arjmand, U. Sundararaj, R.E.S. Bretas, Novel composites of copper nanowire/PVDF with superior dielectric properties. Polymer 55(1), 226–234 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.-F. Pan, G.-S. Wang, L. Liu, L. Guo, S.-H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 10(1), 284–294 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Yu, G. Wang, Enhanced dielectric properties of polymer composite films induced by encapsulated MWCNTs with a one core-two shell structure. J. Polym. Sci. Part B 55, 948–956 (2017)CrossRefGoogle Scholar
  24. 24.
    K. Vasundhara, B.P. Mandal, A.K. Tyagi, Enhancement of dielectric permittivity and ferroelectricity of a modified cobalt nanoparticle and polyvinylidene fluoride based composite. RSC Adv. 5(12), 8591–8597 (2015)CrossRefGoogle Scholar
  25. 25.
    N.V. Lakshmi, P. Tambe, N. K. Sahu, Giant permittivity of three phase polymer nanocomposites obtained by modifying hybrid nanofillers with polyvinylpyrrolidone. Compos. Interfaces  https://doi.org/10.1080/09276440.2017.1338876
  26. 26.
    A.M. Gaur, D.S. Rana, Structural, optical and electrical properties of MgCl2 doped polyvinylidene fluoride (PVDF) composites. J. Mater. Sci. 26, 1246–1251 (2015)Google Scholar
  27. 27.
    A. Carradò, M.A. Taha, N.A. El-Mahallawy, Nanocrystalline γ-Al2 O3 thin film deposited by magnetron sputtering (MS) at low temperature. J. Coat. Technol. Res. 7(4), 515–519 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Broas, O. Kanninen, V. Vuorinen, M. Tilli, M. Paulasto-Kröckel, Chemically stable atomic-layer-deposited Al2O3 films for processability. ACS Omega 2(7), 3390–3398 (2017)CrossRefGoogle Scholar
  29. 29.
    P. Fakhria, H. Mahmood, B. Jaleh, A. Pegoretti, Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nanofiller. Synth. Met. 220, 653–660 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Bhunia, B. Ghosh, D. Ghosh, S. Hussain, R. Bhar, A.K. Pal, Free-standing nanocrystalline-Cadmium sulfide/Polyvinylidene fluoride composite thin film: synthesis and characterization. J. Polym. Res. 22(5), 71 (2015)CrossRefGoogle Scholar
  31. 31.
    D.S. Rana, D.K. Chaturvedi, J.K. Quamara, Fourier transform infrared and ultraviolet-visible investigation of swift heavy 100 MeV Ag-ion- and 75 MeV oxygen-ion-irradiated polyvinylidene fluoride thin films, Proc. Inst. Mech. Eng. Part J 224(7) 667–675 (2010)CrossRefGoogle Scholar
  32. 32.
    Zhi-Min Dang, Y. Wei-Tao, Hai-Ping, Xu, Novel high-dielectric-permittivity poly (vinylidene fluoride)/polypropylene blend composites: THE influence of the poly (vinylidene fluoride) concentration and compatibilizer. J. Appl. Polym. Sci. 105(6), 3649–3655 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Roy, P. Thakur, N.A. Hoque, B. Bagchi, S. Das, Enhanced electroactive β-phase nucleation and dielectric properties of PVdF-HFP thin films influenced by montmorillonite and Ni(OH)2 nanoparticle modified montmorillonite. RSC Adv. 6(26), 21881–21894 (2016)CrossRefGoogle Scholar
  34. 34.
    D. Rana, D. Chaturvedi, J. Quamara, AC conductivity and dielectric constant/loss measurement in pristine and swift heavy 100 MeV Ag-ion irradiated poly (vinylidene fluoride) films. Optoelectron. Adv. Mater. Rapid Commun. 4(6), 838–844 (2010)Google Scholar
  35. 35.
    G. Sundari, K.V. Kumar, N.K. Jyothi, P.A. Reddy, Structural and AC conductivity studies of (PVdF + NaClO4) solid polymer electrolyte system for an electrochemical cell applications. Asian J. Chem. 25, S459 (2013)CrossRefGoogle Scholar
  36. 36.
    W. Zijun, W. Zhou, X. Sui, L. Dong, Enhanced dielectric properties and thermal conductivity of Al/CNTs/PVDF ternary composites. J. Reinf. Plast. Compos. 34, 1126–1135 (2015)CrossRefGoogle Scholar
  37. 37.
    J.E. Lee, Y. Guo, R.E. Lee, S.N. Leung, Fabrication of electroactive poly (vinylidene fluoride) through non-isothermal crystallization and supercritical CO2 processing. RSC Adv. 7(77), 48712–48722 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Wang, Q. Li, Design, synthesis and processing of PVDF-based dielectric polymers. IET Nanodielectrics 1(2), 80–91 (2018)CrossRefGoogle Scholar
  39. 39.
    N.L. Meereboer, I. Terzić, S. Saidi, D. Hermida Merino, K. Loos, Nanoconfinement-induced β-phase formation Inside poly (vinylidene fluoride)-based block copolymers. ACS Macro Lett. 7, 863–867 (2018)CrossRefGoogle Scholar
  40. 40.
    R.M. Wolfe, A.K. Menon, T.R. Fletcher, S.R. Marder, J.R. Reynolds, S.K. Yee, Simultaneous enhancement in electrical conductivity and thermopower of n-type NiETT/PVDF composite films by annealing. Adv. Func. Mater. 28(37), 1803275 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical and Instrumentation Engineering DepartmentThapar Institute of Engineering and Technology (TIET)PatialaIndia
  2. 2.Department of InstrumentationKurukshetra UniversityKurukshetraIndia

Personalised recommendations