Advertisement

Synthesis, Characterization for New Nanometric VO(II)–Thioacetanilide Complexes by, Spectral, Thermal, Molecular Computations and DNA Interaction Study Beside Promising Antitumor Activity

  • Fawaz Saad
  • Nashwa El-MetwalyEmail author
  • Abdalla M. Khedr
Article
  • 15 Downloads

Abstract

A novel series, of thioacetanilide derivatives (4a–e), was synthesized and fully characterized. Their corresponding VO(II) complexes, were prepared and inspected by all analytical, spectral and computational techniques. From IR spectral analysis, poly dentate mode of bonding, was proposed for all organic ligands towards two central atoms. The octahedral arrangement configuration, was suggested for all complexes, based on; UV–Vis, ESR and magnetic measurements. TGA and DTA analysis, built a good assertion on the presence of solvent molecules, attached with the complex particles. The molecular modeling technique, excreted the best structural forms for all tested compounds. Moreover, essential computational parameters were estimated, to verify the molecular formulae. Molecular docking study, was concerning with the inhibition feature against 3s7s and 3gcw proteins, belonging to breast and liver cancer cells, respectively. The computed parameters introduced a promising activity for some tested derivatives. Furthermore, the experimental antitumor screening for VO(II) complexes, versus HepG-2 and MCF-7 cell lines, displayed superiority for [(VO)2(SO4)2(AETA)(H2O)2]3H2O complex in comparing to cisplatin (standard drug). As well as, the genotoxicity results, coincide excellently with antitumor result.

Keywords

Vanadyl complexes Thioacetanilides DNA binding Genotoxicity Docking Antitumor activity 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Supplementary material

10904_2019_1124_MOESM1_ESM.docx (16 mb)
Supplementary material 1 (DOCX 16434 KB)

References

  1. 1.
    K. Savithri, H.D. Revanasiddappa, Bioinorg. Chem. Appl. 2018, 1 (2018)Google Scholar
  2. 2.
    J. Korbecki, I. Baranowska-Bosiacka, I. Gutowska, D. Chlubek, Acta Biochim. Polonica 59, 195 (2012)CrossRefGoogle Scholar
  3. 3.
    I.M. El-Deen, A.F. Shoair, M.A. El-Bindary, J. Mol. Stru. 1180, 420–437 (2019)CrossRefGoogle Scholar
  4. 4.
    E. Bagdatli, E. Altuntas, U. Sayin, J. Mol. Stru. 1127, 653 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Wei, J. Xiao, J. Yu, X. Yi, S. Liu, G. Liu, Polyhedron 137, 176 (2017)CrossRefGoogle Scholar
  6. 6.
    I. Althagafi, N.M. El-Metwally, M. Elghalban, T.A. Farghaly, A.M. Khedr, Bioinorg. Chem. Appl. 2018, 1 (2018)Google Scholar
  7. 7.
    G. Bao, B. Du, Y. Ma, M. Zhao, P. Gong, X. Zhai, Med. Chem. 12, 489 (2016)CrossRefGoogle Scholar
  8. 8.
    Q.P. Peterson, D.C. Hsu, D.R. Goode, C.J. Novotny, R.K. Totten, P.J. Hergenrother, J. Med. Chem. 52, 5721 (2009)CrossRefGoogle Scholar
  9. 9.
    H.M.A. Abumelha, J. Heterocycl. Chem. 55, 1738 (2018)CrossRefGoogle Scholar
  10. 10.
    D. Osmaniye, S. Levent, A.B. Karaduman, S. Ilgın, Y. Özkay, Z.A. Kaplancıkl, Molecules 23, 1 (2018)Google Scholar
  11. 11.
    M.T. Gabr, N.S. El-Gohary, E.R. El-Bendary, M.M. El-Kerdawy, Eur. J. Med. Chem. 85, 576 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Farkona, E.P. Diamandis, I.M. Blasutig, BMC Med. 14, 73 (2016)CrossRefGoogle Scholar
  13. 13.
    A.H. Harhash, F.A. Amer, M.A.N. Eldin, M.L. Awad, Z. Naturforsch. 31B, 846 (1976)CrossRefGoogle Scholar
  14. 14.
    M.E. Reichmann, C.A. Rice, C.A. Thomos, P. Doty, J. Am. Chem. Soc. 76, 3047 (1954)CrossRefGoogle Scholar
  15. 15.
    A. Wolfe, G.H. Shimer, T. Meehan, Biochemistry 26, 6392 (1987)CrossRefGoogle Scholar
  16. 16.
    N.M. El-Metwaly, M.S. Refat, Spectrochim. Acta Part A 78, 196–204 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Mosmann, J. Immunol. Methods 65, 55 (1983)CrossRefGoogle Scholar
  18. 18.
    S.M. Gomha, S.M. Riyadh, E.M. Mahmmoud, M.M. Elaasser, Chem. Heterocycl. Compd. 51, 1030 (2015)CrossRefGoogle Scholar
  19. 19.
    A.I. Vogel, Text Book of Quantitative Inorganic Analysis (Longman, London, 1986)Google Scholar
  20. 20.
    G.A. Bain, J.F. Berry, Chem. Educ. 85, 532 (2008)CrossRefGoogle Scholar
  21. 21.
    E.S. Freeman, B. Carroll, J. Phys. Chem. 62, 394 (1958)CrossRefGoogle Scholar
  22. 22.
    W. Coats, J.P. Redfern, Nature 201, 68 (1964)CrossRefGoogle Scholar
  23. 23.
    T. Ozawa, Bull. Chem. Sot. Japan. 38, 1881 (1965)CrossRefGoogle Scholar
  24. 24.
    W.W. Wendlandt, Thermal Methods of Analysis (Wiley, New York, 1974)Google Scholar
  25. 25.
    J.H.F. Flynn, L.A. Wall, J. Res. Natl. Bur. Stand. A. 70, 487 (1996)Google Scholar
  26. 26.
    P. Kofstad, Nature 179, 1362 (1957)CrossRefGoogle Scholar
  27. 27.
    H.W. Horowitz, G.A. Metzger, Anal. Chem. 35, 1464 (1963)CrossRefGoogle Scholar
  28. 28.
    X. Wu. A.K. Ray, Phys. Rev. B 65, 85403 (2002)CrossRefGoogle Scholar
  29. 29.
    M.J. Frisch et al., Gaussian 09, Revision D (Gaussian, Inc., Wallingford, CT, 2010)Google Scholar
  30. 30.
    R. Dennington, T. Keith, J. Millam. Gauss View, Version 4.1.2, Semichem Inc, Shawnee Mission, KS (2007)Google Scholar
  31. 31.
    U. El-Ayaan, N.M. El-Metwally, M.M. .Youssef, S.A.A. El Bialy, Spectrochim. Acta A 68, 1278 (2007)CrossRefGoogle Scholar
  32. 32.
    R.K. Ray, G.R. Kauffman, Inorg. Chem. Acta 173, 207 (1990)CrossRefGoogle Scholar
  33. 33.
    M.M. Al-Iede, J. Karpelowsky, D.A. Fitzgerald, Pediatr. Pulmonol. 51, 394 (2016)CrossRefGoogle Scholar
  34. 34.
    T.A. Halgren, J. Comput. Chem. 17, 490 (1998)CrossRefGoogle Scholar
  35. 35.
    G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, J. Comput. Chem. 19, 1639 (1998)CrossRefGoogle Scholar
  36. 36.
    D.S. Solis, R.J.B. Wets, Math. Oper. Res. 6, 19 (1981)CrossRefGoogle Scholar
  37. 37.
    W.J. Geary, Coord. Chem. Rev. 7, 81 (1971)CrossRefGoogle Scholar
  38. 38.
    N.M. El-Metwaly, R.M. El-shazly, I.M. Gabr, A.A. El-Asmy, Spectrochim. Acta A 61, 1113 (2005)CrossRefGoogle Scholar
  39. 39.
    K.S. Abu-Melhaa, N.M. El-Metwally, Spectrochim. Acta A 70, 277 (2008)CrossRefGoogle Scholar
  40. 40.
    K. Nakamoto, Infrared Raman Spectra of Inorganic and Coordination Compounds (Wiley–Interscience, New York, 1986)Google Scholar
  41. 41.
    A.A. Abou-Hussen, N.M. El-Metwaly, E.M. Saad, A.A. El-Asmy, Coord. Chem. 58, 1735 (2005)CrossRefGoogle Scholar
  42. 42.
    A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1986)Google Scholar
  43. 43.
    H. Yokoi, A.W. Addison, Inorg. Chem. 16, 1341 (1977)CrossRefGoogle Scholar
  44. 44.
    B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5, 143 (1970)CrossRefGoogle Scholar
  45. 45.
    T.M. Dunn, Trans. Faraday Soc. 57, 1441 (1961)CrossRefGoogle Scholar
  46. 46.
    R.C. Chikate, S.B. padhye, Polyhedron 24, 1689 (2005)CrossRefGoogle Scholar
  47. 47.
    B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company Inc., Phillippines, 1978)Google Scholar
  48. 48.
    S. Velumani, X. Mathew, P.J. Sebastian, S.K. Narayandass, D. Mangalaraj, Sol. Cells 76, 347 (2003)CrossRefGoogle Scholar
  49. 49.
    J.S. Ritch, T. Chivers, K. Ahmad, M. Afzaal, P.O. Brien, Inorg. Chem. 49, 1198 (2010)CrossRefGoogle Scholar
  50. 50.
    A.Z. El-Sonbati, A.F. Shoair, A.A. El-Bindary, M.A. Diab, A.S. Mohamed, J. Mol. Liq. 209, 635 (2015)CrossRefGoogle Scholar
  51. 51.
    L.H. Abdel-Rahman, A.M. Abu-Dief, N.M. Ismail, M. Ismael, J. Inorg, Nano-Metal Chem. 47, 467 (2017)Google Scholar
  52. 52.
    R. Sabet, M. Mohammadpour, A. Sadeghi, A. Fassihi, Eur. J. Med. Chem. 45, 1113 (2010)CrossRefGoogle Scholar
  53. 53.
    M. Kumar, K. Ramasamy, V. Mani, R.K. Mishra, A.B.A. Majeed, E. De Clercq, B. Narasimhan, Arab. J. Chem. 7, 396 (2014)CrossRefGoogle Scholar
  54. 54.
    I. Fleming, Frontier Orbital’s and Organic Chemical Reactions (Wiley, London, 1976)Google Scholar
  55. 55.
    S.K. Tripathi, R. Muttineni, S.K. Singh, J. Theor. Biol. 334, 87 (2013)CrossRefGoogle Scholar
  56. 56.
    F.A. Saad, J.H. Al-Fahemi, H. El-Ghamry, A.M. Khedr, M.G. Elghalban, N.M. El-Metwaly, J. Therm. Anal. Calorim. 131, 1249 (2018)CrossRefGoogle Scholar
  57. 57.
    N. Terakado, S. Shintani, Y. Nakahara, Oncol. Rep. 7, 1113 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fawaz Saad
    • 1
  • Nashwa El-Metwaly
    • 1
    • 2
    Email author
  • Abdalla M. Khedr
    • 1
    • 3
  1. 1.Chemistry Department, Faculty of Applied ScienceUmm Al-Qura UniversityMakkahSaudi Arabia
  2. 2.Chemistry Department Faculty of ScienceMansoura UniversityMansouraEgypt
  3. 3.Chemistry Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations