In Situ Chemical Synthesis of MnO2/HMCNT Nanocomposite with a Uniquely Developed Three-Dimensional Open Porous Architecture for Supercapacitors

  • Shiquan Hong
  • Xiaobin HuangEmail author
  • Hong Liu
  • Zhuan Gao


The successful application of supercapacitors in energy conversion and storage hinges on the development of highly efficient and stable electrode materials. While a fast and facile synthesis of superior performance of supercapacitors is still a challenge. Motivated by this, MnO2/heteroatom-doped mesoporous carbon nanotubes (HMCNTs) with a uniquely developed three-dimensional open porous system containing mesopores and micropores are synthesized by a facile one-step chemical coprecipitation method for supercapacitor electrodes. The HMCNTs in the composite serve not only as the template for the growth of MnO2 particles, but also as the electrically conductive channel for electrochemical performance enhancement. The MnO2/HMCNTs nanocomposite electrode exhibits much larger specific capacitance compared with both the HMCNTs electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/HMCNTs nanocomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport. Moreover, the MnO2/HMCNTs also shows superior cycling stability with only 3.7% capacitance drop after 5000 cycles. The enhanced electrochemical performance of the MnO2/HMCNTs makes them a promising electrode material for application in supercapacitors and potentially other energy storage devices.


Supercapacitors Facile MnO2/HMCNTs nanocomposite Electrochemical 



This work was supported by Natural Science Foundation of China (Grant Nos. 21274092, 91441205), and Shanghai Science & Technology Committee (Grant No. 10ZR1416100).


  1. 1.
    M. Li, Q. Chen, H. Zhan, Ultrathin manganese dioxide nanosheets grown on partially unzipped nitrogen-doped carbon nanotubes for high-performance asymmetric supercapacitors. J. Alloys Compd. 702, 236–243 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Xie, X.N. Guo, G.Q. Jin, X.L. Tong, Y.Y. Wang, X.Y. Guo, In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes. Chem. Commun. (Camb) 50(2), 228–230 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Zhou, R. Ma, S.L. Candelaria, J. Wang, Q. Liu, E. Uchaker, P. Li, Y. Chen, G. Cao, Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J. Power Sources 314, 39–48 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Deng, Y. Xie, K. Zou, X. Ji, Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4(4), 1144–1173 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, C.Y. Foo, T.K. Hoo, M. Ng, J. Lin, Designed smart system of the sandwiched and concentric architecture of RuO2/C/RuO2 for high performance in electrochemical energy storage. Chemistry 16(12), 3598–3603 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Xu, L. Dong, C. Li, H. Tang, Facile synthesis of Mo0.91W0.09S2 ultrathin nanosheets/amorphous carbon composites for high-performance supercapacitor. Mater. Lett. 162, 126–130 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Growth of polypyrrole ultrathin films on MoS(2) monolayers as high-performance supercapacitor electrodes. Adv. Mater. 27(6), 1117–1123 (2015)CrossRefGoogle Scholar
  9. 9.
    E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, C.W. Siong, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior. Ceram. Int. 41(9), 11418–11427 (2015)CrossRefGoogle Scholar
  10. 10.
    A.K. Das, S.K. Karan, B.B. Khatua, High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim. Acta 180, 1–15 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Xin, Y. Wang, J. Zhang, S. Jia, J. Zang, Y. Wang, A self-supporting graphene/MnO2 composite for high-performance supercapacitors. Int. J. Hydrog. Energy 40(32), 10176–10184 (2015)CrossRefGoogle Scholar
  12. 12.
    R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, H.E. Unalan, Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl. Mater. Interfaces 6(17), 15434–15439 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Fan, P. Liu, B. Zhu, S. Chen, K. Yao, R. Han, Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors. Int. J. Hydrog. Energy 40(18), 6188–6196 (2015)CrossRefGoogle Scholar
  14. 14.
    T.-T. Lin, W.-H. Lai, Q.-F. Lü, Y. Yu, Porous nitrogen-doped graphene/carbon nanotubes composite with an enhanced supercapacitor performance. Electrochim. Acta 178, 517–524 (2015)CrossRefGoogle Scholar
  15. 15.
    B. You, L. Wang, L. Yao, J. Yang, Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem. Commun. (Camb) 49(44), 5016–5018 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Jiang, Y. Cao, P. Li, J. Wei, K. Wang, D. Wu, H. Zhu, Polyaniline/graphene/carbon fiber ternary composites as supercapacitor electrodes. Mater. Lett. 140, 43–47 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Dhibar, C.K. Das, Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes. J. Alloys Compd. 653, 486–497 (2015)CrossRefGoogle Scholar
  18. 18.
    N. Phattharasupakun, J. Wutthiprom, P. Chiochan, P. Suktha, M. Suksomboon, S. Kalasina, M. Sawangphruk, Turning conductive carbon nanospheres into nanosheets for high-performance supercapacitors of MnO2 nanorods. Chem. Commun. (Camb) 52(12), 2585–2588 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Yu, Y. Zhai, H. Liu, L. Li, Single-layer MnO2 nanosheets: from controllable synthesis to free-standing film for flexible supercapacitors. Mater. Lett. 176, 33–37 (2016)CrossRefGoogle Scholar
  20. 20.
    M.S. Kolathodi, M. Palei, T.S. Natarajan, Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J. Mater. Chem. A 3(14), 7513–7522 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Liu, H. Che, Y. Mao, Y. Wang, J. Mu, C. Wu, Y. Bai, X. Zhang, G. Wang, Template-free synthesis of one-dimensional hierarchical NiO nanotubes self-assembled by nanosheets for high-performance supercapacitors. Ceram. Int. 42(9), 11435–11441 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma, Y. Qu, Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl. Mater. Interfaces 7(36), 20322–20331 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Pan, X. Chen, Y. Li, Z. Yu, Facile synthesis of Co3O4 nanosheets electrode with ultrahigh specific capacitance for electrochemical supercapacitors. Electrochim. Acta 182, 1101–1106 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22(8), E28–E62 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Kong, K. Cheng, T. Ouyang, K. Ye, Y. Gao, G. Wang, D. Cao, Freestanding one-dimensional manganese dioxide nanoflakes-titanium cabide/carbon core/double shell arrays as ultra-high performance supercapacitor electrode. J. Power Sources 293, 519–526 (2015)CrossRefGoogle Scholar
  26. 26.
    A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7(2), 281–286 (2007)CrossRefGoogle Scholar
  27. 27.
    C. Xia, Y. Xie, H. Du, W. Wang, Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode. J. Nanoparticle Res. 17(1), 30 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Jiang, X. Cui, L. Zu, Z. Hu, J. Gan, H. Lian, Y. Liu, G. Xing, Preparation and electrochemical properties of mesoporous manganese dioxide-based composite electrode for supercapacitor. J. Nanosci. Nanotechnol. 17(1), 507–516 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Hao, X. Wang, Y. Yin, Z. You, Modeling and simulation of a lithium manganese oxide/activated carbon asymmetric supercapacitor. J. Electron. Mater. 45(1), 515–526 (2015)CrossRefGoogle Scholar
  30. 30.
    S.A. Klankowski, G.P. Pandey, G. Malek, C.R. Thomas, S.L. Bernasek, J. Wu, J. Li, Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale 7(18), 8485–8494 (2015)CrossRefGoogle Scholar
  31. 31.
    C.H. Ng, H.N. Lim, Y.S. Lim, W.K. Chee, N.M. Huang, Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int. J. Energy Res. 39(3), 344–355 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Qie, W.M. Chen, Z.H. Wang, Q.G. Shao, X. Li, L.X. Yuan, X.L. Hu, W.X. Zhang, Y.H. Huang, Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 24(15), 2047–2050 (2012)CrossRefGoogle Scholar
  33. 33.
    L. Zhu, Y. Xu, W. Yuan, J. Xi, X. Huang, X. Tang, S. Zheng, One-pot synthesis of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes via an in situ template approach. Adv. Mater. 18(22), 2997–3000 (2006)CrossRefGoogle Scholar
  34. 34.
    K. Chen, X. Huang, C. Wan, H. Liu, Heteroatom-doped mesoporous carbon nanofibers based on highly cross-linked hybrid polymeric nanofibers: facile synthesis and application in an electrochemical supercapacitor. Mater. Chem. Phys. 164, 85–90 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Gao, H. Fjellvag, P. Norby, A comparison study on Raman scattering properties of alpha- and beta-MnO2. Anal. Chim. Acta 648(2), 235–239 (2009)CrossRefGoogle Scholar
  36. 36.
    Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, J. Chen, Nitrogen-enriched core-shell structured Fe/Fe(3)C–C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(11), 1399–1404 (2012)CrossRefGoogle Scholar
  37. 37.
    G. Yang, H. Han, T. Li, C. Du, Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent. Carbon 50(10), 3753–3765 (2012)CrossRefGoogle Scholar
  38. 38.
    D.G. Lee, J.H. Kim, B.-H. Kim, Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: effect of poly(methyl methacrylate) concentration. Electrochim. Acta 200, 174–181 (2016)CrossRefGoogle Scholar
  39. 39.
    Y. Liu, X. Cai, B. Luo, M. Yan, J. Jiang, W. Shi, MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes. Carbon 107, 426–432 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118(40), 22865–22872 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shiquan Hong
    • 1
  • Xiaobin Huang
    • 1
    Email author
  • Hong Liu
    • 1
  • Zhuan Gao
    • 2
  1. 1.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations