Advertisement

Impact of Annealing Temperature on Spin Coated V2O5 Thin Films as Interfacial Layer in Cu/V2O5/n-Si Structured Schottky Barrier Diodes

  • V. Balasubramani
  • J. ChandrasekaranEmail author
  • R. Marnadu
  • P. Vivek
  • S. Maruthamuthu
  • S. Rajesh
Article
  • 21 Downloads

Abstract

In this paper, we report the influence of thermal annealing on structural, electrical properties V2O5 thin films and their application of SBD’s. V2O5 thin films were prepared using glass substrate by sol gel spin coating technique. Films were annealed at different temperatures such as 300 °C, 400 °C and 500 °C. The prepared films were introduced as an interfacial layer between metal and semiconductor interface. V2O5 films exhibit single phase tetragonal structure and surface morphology interestingly, it was changed into nanorod-like structure at higher annealing temperature which was observed through field emission scanning electron microscopy. Atomic force microscopy reveals the surface roughness and the mentioned roughness is increasing due to the increase of annealing temperature. The elemental composition was confirmed by energy dispersive X-ray spectrum. From UV–Vis absorption spectroscopy results revealed that the band gap shows a decreasing trend on increasing the annealing temperature. Besides, we analyzed the influence of high quality vanadium pentoxide (V2O5) thin films prepared at different annealed temperatures and act as an interfacial layer between metal and semiconductor in the fabrication of Schottky diode. V2O5 films depicts high electrical conductivity (σdc) of 0.945 (S cm−1) with activation energy of 0.0747 eV (Ea) as a function of temperature. The MIS structured Cu/V2O5/n-Si based SBD’s diode performance was analyzed for different temperatures ranging from 30 to 150 °C. V2O5 thin-film act as an interfacial layer on Cu/V2O5/n-Si Schottky diode was successfully explained by the thermionic emission theory.

Keywords

MIS structured Schottky barrier diode V2O5 thin film Spin coating Annealing temperature 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the DST, Government of India, for the major research Project (EMR/2016/007874). The authors would like to thank Dr. P. Suresh, SRM IST Chennai for assist in AFM Studies.

References

  1. 1.
    N.S. Kumar, M.S. Raman, J. Chandrasekaran, R. Priya, M. Chavali, R. Suresh, Mater. Sci. Semicond. Process. 41, 497 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Mahato, D. Biswas, L.G. Gerling, C. Voz, J. Puigdollers, AIP Adv. 7, 085313 (2017)CrossRefGoogle Scholar
  3. 3.
    Z. Liu, S.P. Lau, F. Yan, Chem. Soc. Rev. 44, 5638 (2015)CrossRefGoogle Scholar
  4. 4.
    P.D. Raj, S. Gupta, M. Sridharan, Ceram. Int. 43, 9401 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Beke, Thin Solid Films 519, 1761 (2011)CrossRefGoogle Scholar
  6. 6.
    B.A. Bhat, G.R. Khan, K. Asokan, RSC Adv. 5, 52602 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Thiagarajan, M. Thaiyan, R. Ganesan, RSC Adv. 6, 82581 (2016)CrossRefGoogle Scholar
  8. 8.
    P. Banerjee, X. Chen, K. Gregorczyk, L. Henn-Lecordier, G.W. Rubloff, J. Mater. Chem. 21, 15391 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari, P.C. Selvin, Energy Environ. Sci. 4, 1712 (2011)CrossRefGoogle Scholar
  10. 10.
    Y.J. Park, K.S. Ryu, K.M. Kim, N.G. Park, M.G. Kang, S.H. Chang, Solid State Ionics 154–155, 229 (2002)CrossRefGoogle Scholar
  11. 11.
    Z. Lu, M.D. Levi, G. Salitra, Y. Gofer, E. Levi, D. Aurbach, J. Electroanal. Chem. 491, 211 (2000)CrossRefGoogle Scholar
  12. 12.
    R. Lindström, V. Maurice, S. Zanna, L. Klein, H. Groult, L. Perrigaud, C. Cohen, P. Marcus, Surf. Interface Anal. 38, 6 (2006)CrossRefGoogle Scholar
  13. 13.
    L. Michailovits, K. Bali, T. Szörényi, I. Hevesi, Acta Phys. Acad. Sci. Hungaricae 49, 217 (1980)CrossRefGoogle Scholar
  14. 14.
    G.J. Fang, Z.L. Liu, Y. Wang, Y.H. Liu, K.L. Yao, J. Vac. Sci. Technol. A Vacuum, Surf. Film. 19, 887 (2001)CrossRefGoogle Scholar
  15. 15.
    A. Bouzidi, N. Benramdane, A. Nakrela, C. Mathieu, B. Khelifa, R. Desfeux, A. Da Costa, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 95, 141 (2002)CrossRefGoogle Scholar
  16. 16.
    A. Mrigal, M. Addou, M.E. El, Jouad, S. Khannyra, J. Mater. Environ. Sci. 8, 3598 (2017)Google Scholar
  17. 17.
    D.B. Le, J. Electrochem. Soc. 142, L102 (1995)CrossRefGoogle Scholar
  18. 18.
    S. Mahato, D. Biswas, Mater. Res. Express 6, 036303 (2018)CrossRefGoogle Scholar
  19. 19.
    R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, J. Mater. Sci. Mater. Electron. 29, 2618 (2018)CrossRefGoogle Scholar
  20. 20.
    N.N.K. Reddy, H.S. Akkera, M.C. Sekhar, S. Uthanna, Silicon 1 (2018)Google Scholar
  21. 21.
    C.L. Sorrensen, Geogr. Bull. - Gamma Theta Upsilon 47, 101 (2005)Google Scholar
  22. 22.
    G.S. Kim, S.W. Kim, S.H. Kim, J. Park, Y. Seo, B.J. Cho, C. Shin, J.H. Shim, H.Y. Yu, ACS Appl. Mater. Interfaces 8, 35419 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Sasikumar, R. Bharathikannan, M. Raja, Silicon 1 (2018)Google Scholar
  24. 24.
    K. Omri, I. Najeh, L. El Mir Ceramics International 42, 8940–8948 (2016)Google Scholar
  25. 25.
    K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Physica B, 537 (2018)Google Scholar
  26. 26.
    N. Alonizan, S. Rabaoui, K. Omri, Rabia Qindeel Appl. Physics A, 124 (2018)Google Scholar
  27. 27.
    D. Vasanth Raj, N. Ponpandian, D. Mangalaraj, C. Viswanathan, Mater. Sci. Semicond. Process. 16, 256 (2013)CrossRefGoogle Scholar
  28. 28.
    K. Jeyalakshmi, S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Mater. Res. Bull. 48, 760 (2013)CrossRefGoogle Scholar
  29. 29.
    U. Kürüm, H.G. Yaglioglu, B. Küc¸üköz, R.M. Oksuzoglu, M. Yildirim, A.M. Yaʇci, C. Yavru, S. Özgün, T. Tiraş, A. Elmali, J. Opt. (United Kingdom) 17, 015503 (2015)Google Scholar
  30. 30.
    A. Asadov, S. Mukhtar, W. Gao, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 33, 041802 (2015)Google Scholar
  31. 31.
    C.W. Zou, X.D. Yan, D.A. Patterson, E.A.C. Emanuelsson, J.M. Bian, W. Gao, CrystEngComm 12, 691 (2010)CrossRefGoogle Scholar
  32. 32.
    Q. Su, W. Lan, Y.Y. Wang, X.Q. Liu, Appl. Surf. Sci. 255, 4177 (2009)CrossRefGoogle Scholar
  33. 33.
    D. Vernardou, M. Apostolopoulou, D. Louloudakis, N. Katsarakis, E. Koudoumas, J. Colloid Interface Sci. 424, 1 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Stewart, 20, 44106 (2009)Google Scholar
  35. 35.
    J. Sun, C. Li, Y. Qi, S. Guo, X. Liang, Sensors (Switzerland) 16, 584 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Zhang, R. Huang, T. Zhang, Y. Li, Y. Chen, Y. Zhong, P. Fan, J. Huang, Phys. Status Solidi Appl. Mater. Sci. 209, 2229 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Grzechnik, ÄN. Supe, Chem. Mater. 10, 2505 (1998)CrossRefGoogle Scholar
  38. 38.
    M.B. Sahana, C. Sudakar, C. Thapa, G. Lawes, V.M. Naik, R.J. Baird, G.W. Auner, R. Naik, K.R. Padmanabhan, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 143, 42 (2007)CrossRefGoogle Scholar
  39. 39.
    M.S. Raman, N.S. kumar, J. Chandrasekaran, R. Priya, P. Baraneedharan, M. Chavali, Optik (Stuttg). 157, 410 (2018)CrossRefGoogle Scholar
  40. 40.
    Z. Wan, R.B. Darling, M.P. Anantram, Phys. Chem. Chem. Phys. 17, 30248 (2015)CrossRefGoogle Scholar
  41. 41.
    Z. Luo, Z. Wu, X. Xu, M. Du, T. Wang, Y. Jiang, Vacuum 85, 145 (2010)CrossRefGoogle Scholar
  42. 42.
    R. Mustafa Öksüzoǧlu, P. Bilgiç, M. Yildirim, O. Deniz, Opt. Laser Technol. 48, 102 (2013)CrossRefGoogle Scholar
  43. 43.
    Y. Sun, X. Xiao, G. Xu, G. Dong, G. Chai, H. Zhang, P. Liu, H. Zhu, Y. Zhan, Sci. Rep. 3, 2756 (2013)CrossRefGoogle Scholar
  44. 44.
    Y. Hu, Z. Li, Z. Zhang, D. Meng, Appl. Phys. Lett. 94, 103107 (2009)CrossRefGoogle Scholar
  45. 45.
    M.M. Margoni, S. Mathuri, K. Ramamurthi, R.R. Babu, K. Sethuraman, Appl. Surf. Sci. 418, 280 (2017)CrossRefGoogle Scholar
  46. 46.
    C.V. Ramana, R.J. Smith, O.M. Hussain, C.C. Chusuei, C.M. Julien, Chem. Mater. 17, 1213 (2005)CrossRefGoogle Scholar
  47. 47.
    C. Glynn, D. Creedon, H. Geaney, E. Armstrong, T. Collins, M.A. Morris, C.O. Dwyer, Nature Publishing Group. May 1–15 (2015)Google Scholar
  48. 48.
    M. Kang, S.W. Kim, Y. Hwang, Y. Um, J.W. Ryu, AIP Adv. 3, 052129 (2013)CrossRefGoogle Scholar
  49. 49.
    O. Pakma, N. Serin, T. Serin, Ş Altindal, J. Appl. Phys. 104, 014501 (2008)CrossRefGoogle Scholar
  50. 50.
    I. Pradeep, E. Ranjith Kumar, N. Suriyanarayanan, K. Mohanraj, C. Srinivas, M.V.K. Mehar, New J. Chem. 42, 4278 (2018)CrossRefGoogle Scholar
  51. 51.
    M. Raja, J. Chandrasekaran, M. Balaji, B. Janarthanan, Mater. Sci. Semicond. Process. 56, 145 (2016)CrossRefGoogle Scholar
  52. 52.
    M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104 (2016)CrossRefGoogle Scholar
  53. 53.
    M. Balaji, J. Chandrasekaran, M. Raja, S. Rajesh, J. Mater. Sci. Mater. Electron. 27, 11646 (2016)CrossRefGoogle Scholar
  54. 54.
    S. Mahato, J. Puigdollers, Phys. B Condens. Matter 530, 327 (2018)CrossRefGoogle Scholar
  55. 55.
    S. Zeyrek, Ş Altindal, H. Yüzer, M.M. Bülbül, Appl. Surf. Sci. 252, 2999 (2006)CrossRefGoogle Scholar
  56. 56.
    Ş. Altindal, Y. Şafak Asar, A. Kaya, Z. Sönmez, J. Optoelectron. Adv. M. 14, 998–1004 (2012)Google Scholar
  57. 57.
    R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, P. Balraju, Superlattices Microstruct. 119, 134 (2018)CrossRefGoogle Scholar
  58. 58.
    A. Tataroǧlu, Ş Altindal, J. Alloys Compd. 484, 405 (2009)CrossRefGoogle Scholar
  59. 59.
    A.F. Güçlü, A. Özdemir, A. Karabulut, Kökce, Altındal, Mater. Sci. Semicond. Process. 89, 26 (2019)CrossRefGoogle Scholar
  60. 60.
    K. Ejderha, I. Orak, S. Duman, A. Turut, J. Electron. Mater. 47, 3502 (2018)CrossRefGoogle Scholar
  61. 61.
    S. Rao, G. Pangallo, L. Di Benedetto, A. Rubino, G.D. Licciardo, F.G. Della, Corte, Sensors Actuators, A Phys. 269, 171 (2018)CrossRefGoogle Scholar
  62. 62.
    S. Kumar, F. Maury, N. Bahlawane, Mater. Today Phys. 2, 1 (2017)CrossRefGoogle Scholar
  63. 63.
    S. ̧ Karataş, S. ̧, Altindal, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 122, 133 (2005)CrossRefGoogle Scholar
  64. 64.
    Ş. Karataş, Ş. Altindal, A. Türüt, A. Özmen, Appl. Surf. Sci. 217, 250 (2003)CrossRefGoogle Scholar
  65. 65.
    S. Mahato, N. Shiwakoti, A.K. Kar, in AIP Conf. Proc. (2015), p. 120011Google Scholar
  66. 66.
    S. Özdemir, I. Dökme, Ş Altindal, Int. J. Electron. 98, 699 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. Balasubramani
    • 1
  • J. Chandrasekaran
    • 1
    Email author
  • R. Marnadu
    • 1
  • P. Vivek
    • 1
  • S. Maruthamuthu
    • 2
  • S. Rajesh
    • 3
  1. 1.Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia
  2. 2.Department of PhysicsDr. Mahalingam College of Engineering and TechnologyPollachiIndia
  3. 3.Department of Nanoscience and TechnologyKarunya Institute of Technology and SciencesCoimbatoreIndia

Personalised recommendations