Poly (ε-caprolactone) Microsphere Decorated with Nano-ZnO Based Phytoformulation: A Promising Antimicrobial Agent

  • S. Snigdha
  • M. Rahul
  • Nandakumar Kalarikkal
  • Sabu Thomas
  • E. K. RadhakrishnanEmail author


In this study, an ethnonanocomposite was produced by using Curcuma zedoaria and ZnO nanoparticles. This was immobilised on poly (ε-caprolactone) (PCL) microspheres for effective delivery. The presence of curcuminoids in C. zedoaria extract was confirmed by GC–MS and LC–MS analyses. The ZnO/C. zedoaria. nanocomposite synthesised in this study was subjected to X-ray diffraction and field emission scanning electron microscopy, which revealed the crystalline nature of formed nanocomposite. The nanocomposite was then immobilised on PCL microspheres by emulsion solvent evaporation. Further, XRD and FE-SEM confirmed the presence of nanocomposites and the spherical nature of the polymeric microspheres with diameter ranging from 4 to 36 µm. The antimicrobial activity analysis revealed the remarkable effectiveness of the nanocomposite loaded microspheres. The ethnonanocomposite loaded PCL microspheres generated in the study can thus be an effective antimicrobial agent with diverse biomedical applications.


Curcuma zedoaria Nano-phyto formulation Antimicrobial Polymer microsphere PCL microsphere Ethnic-nanomedicine 



The authors would like to thank Department of Science and Technology (DST) the instrument facilities at International and Inter University Centre for Nanoscience and Nanotechnology and School of Biosciences, Mahatma Gandhi University.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    N.D. Prajapati, Handbook of Medicinal Plants (Agrobios, Jodhpur, 2003)Google Scholar
  2. 2.
    K.I. Kim, J.W. Kim, B.S. Hong, D.H. Shin, H.Y. Cho, H.K. Kim et al., Antitumor, genotoxicity and anticlastogenic activities of polysaccharide from Curcuma zedoaria. Mol. Cells 10(4), 392–398 (2000)Google Scholar
  3. 3.
    B. Wilson, G. Abraham, V. Manju, M. Mathew, B. Vimala, S. Sundaresan et al., Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. J. Ethnopharmacol. 99(1), 147–151 (2005)CrossRefGoogle Scholar
  4. 4.
    B.V. Bonifácio, P.B. da Silva, dos M.A. Santos Ramos, K.M.S. Negri, T.M. Bauab, M. Chorilli, Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomed. 9, 1 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Ansari, M. Farha Islam, Influence of nanotechnology on herbal drugs: a review. J. Adv. Pharm. Technol. Res. 3(3), 142 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Abbasi, J.J. Sardroodi, A highly sensitive chemical gas detecting device based on N-doped ZnO as a modified nanostructure media: a DFT + NBO analysis. Surf. Sci. 668, 150–163 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Abbasi, J.J. Sardroodi, An innovative gas sensor system designed from a sensitive nanostructured ZnO for the selective detection of SO x molecules: a density functional theory study. New J. Chem. 41(21), 12569–12580 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Abbasi, J.J. Sardroodi, Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. Comput. Theor. Chem. 1095, 15–28 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Abbasi, J.J. Sardroodi, Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: applications to gas sensor devices. Appl. Surf. Sci. 436, 27–41 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Abbasi, J.J. Sardroodi, N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ. Sci.: Nano 3(5), 1153–1164 (2016)Google Scholar
  11. 11.
    A.I. El-Batal, F.M. Mosalam, M. Ghorab, A. Hanora, A.M. Elbarbary, Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. Int. J. Biol. Macromol. 107, 2298–2311 (2018)CrossRefGoogle Scholar
  12. 12.
    S.I. Hong, P. Ganeshan, A. Vincent, S. Mahalingam, Green synthesis and characterization of zinc oxide nanoparticle antimicrobial anticancer activity using insulin plant (Costus pictus D. Don) leaf extract. Adv. Nat. Sci.: Nanosci. Nanotechnol. Google Scholar
  13. 13.
    K. Soumya, S. Snigdha, S. Sugathan, J. Mathew, E. Radhakrishnan, Zinc oxide–curcumin nanocomposite loaded collagen membrane as an effective material against methicillin-resistant coagulase-negative Staphylococci. 3 Biotech 7(4), 238 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Prakash, Use of metals in Ayurvedic medicine. Indian J. Hist. Sci. 32, 1–28 (1997)Google Scholar
  15. 15.
    K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M.S. Al-Said, A.A. Alkhedhairy et al., Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J. Colloid Interface Sci. 472, 145–156 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Joshy, S. Snigdha, G. Anne, K. Nandakumar, T. Sabu, Poly (vinyl pyrrolidone)-lipid based hybrid nanoparticles for anti viral drug delivery. Chem. Phys. Lipids 210, 82–89 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Yang, F. Gao, D. Han, L. Yang, X. Kong, M. Wei et al., Multifunctional zinc-based hollow nanoplatforms as a smart pH-responsive drug delivery system to enhance in vivo tumor-inhibition efficacy. Mater. Des. 139, 172–180 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Rampichová, M. Buzgo, V. Lukášová, A. Míčková, K. Vocetková, V. Sovková et al. Functionalization of 3D fibrous scaffolds prepared using centrifugal spinning with liposomes as a simple drug delivery system. Acta Polytech. CTU Proc. 8, 24–26 (2017)CrossRefGoogle Scholar
  19. 19.
    B. Rai, S.-H. Teoh, D. Hutmacher, T. Cao, K. Ho, Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials 26(17), 3739–3748 (2005)CrossRefGoogle Scholar
  20. 20.
    C.G. Pitt, A.R. Jeffcoat, R.A. Zweidinger, A. Schindler, Sustained drug delivery systems. I. The permeability of poly (ε-caprolactone), poly (dl-lactic acid), and their copolymers. J. Biomed. Mater. Res. 13(3), 497–507 (1979)CrossRefGoogle Scholar
  21. 21.
    J. Kundu, J.H. Shim, J. Jang, S.W. Kim, D.W. Cho, An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 9(11), 1286–1297 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Wang, Y. Xu, C. Lv, C. Han, Y. Li, Enhanced wound healing activity of PEG/PCL copolymer combined with bioactive nanoparticles in wound care after anorectal surgery: via bio-inspired methodology. J. Photochem. Photobiol. B: Biol. 187, 54–60 (2018)CrossRefGoogle Scholar
  23. 23.
    J.P. Temple, D.L. Hutton, B.P. Hung, P.Y. Huri, C.A. Cook, R. Kondragunta et al., Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. Part A 102(12), 4317–4325 (2014)Google Scholar
  24. 24.
    J. Yang, S.-B. Park, H.-G. Yoon, Y.-M. Huh, S. Haam, Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int. J. Pharm. 324(2), 185–190 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Chen, W. Que, Y. Xing, B. Lei, Molecular level-based bioactive glass-poly (caprolactone) hybrids monoliths with porous structure for bone tissue repair. Ceram. Int. 41(2), 3330–3334 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Zeng, W. Tao, L. Mei, L. Huang, C. Tan, S.-S. Feng, Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34(25), 6058–6067 (2013)CrossRefGoogle Scholar
  27. 27.
    J.E. Song, A.R. Kim, C.J. Lee, N. Tripathy, K.H. Yoon, D. Lee et al., Effects of purified alginate sponge on the regeneration of chondrocytes: in vitro and in vivo. J. Biomater. Sci. Polym. Ed. 26(3), 181–195 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Zhu, W. Tao, H. Zhang, G. Liu, T. Wang, L. Zhang et al., Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater. 30, 144–154 (2016)CrossRefGoogle Scholar
  29. 29.
    N. Gao, Z. Chen, X. Xiao, C. Ruan, L. Mei, Z. Liu et al., Surface modification of paclitaxel-loaded tri-block copolymer PLGA-b-PEG-b-PLGA nanoparticles with protamine for liver cancer therapy. J. Nanopart. Res. 17(8), 347 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Li, C. Xiang, M. Ye, H.-F. Li, X. Zhang, D.-A. Guo, Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species. Food Chem. 126(4), 1890–1895 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Mukerjee, V. Sinha, V. Pruthi, Preparation and characterization of poly-ε-caprolactone particles for controlled insulin delivery. J. Biomed. Pharm. Eng. 1(1), 40–44 (2007)Google Scholar
  32. 32.
    J.M. Halket, D. Waterman, A.M. Przyborowska, R.K. Patel, P.D. Fraser, P.M. Bramley, Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56(410), 219–243 (2004)CrossRefGoogle Scholar
  33. 33.
    S. Mathew, S. Snigdha, J. Mathew, E. Radhakrishnan, Poly (vinyl alcohol): Montmorillonite: boiled rice water (starch) blend film reinforced with silver nanoparticles; characterization and antibacterial properties. Appl. Clay Sci. 161, 464–473 (2018)CrossRefGoogle Scholar
  34. 34.
    S.S. Babu, N. Kalarikkal, S. Thomas, E. Radhakrishnan, Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly (l-lactic acid) as evidenced by structural features. Appl. Clay Sci. 153, 198–204 (2018)CrossRefGoogle Scholar
  35. 35.
    S. Uehara, I. Yasuda, K. Takeya, H. Itokawa, Terpenoids and curcuminoids of the rhizoma of Curcuma xanthorrhiza Roxb. Yakugaku Zasshi: J. Pharm. Soc. Jpn 112(11), 817–823 (1992)CrossRefGoogle Scholar
  36. 36.
    I. Sasidharan, A.N. Menon, Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe). Int. J. Curr. Pharm. Res. 2(4), 40–43 (2010)Google Scholar
  37. 37.
    J.M. Halket, D. Waterman, A.M. Przyborowska, R.K.P. Patel, P.D. Fraser, P.M. Bramley, Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56(410), 219–243 (2005)CrossRefGoogle Scholar
  38. 38.
    Y. Cao, R.X. Xu, Z. Liu, A high-throughput quantification method of curcuminoids and curcumin metabolites in human plasma via high-performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. B 0, 70–78 (2014)CrossRefGoogle Scholar
  39. 39.
    K.-Y. Yang, L.-C. Lin, T.-Y. Tseng, S.-C. Wang, T.-H. Tsai, Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. J. Chromatogr. B 853(1–2), 183–189 (2007)CrossRefGoogle Scholar
  40. 40.
    R.P. Singh, D. Jain, Evaluation of antimicrobial activity of curcuminoids isolated from turmeric. Int. J. Pharm. Life Sci. 3(1), 1368–1376 (2012)Google Scholar
  41. 41.
    L. Ambarsari, W. Nurcholis, L.K. Darusman, M.A. Mujib, R. Heryanto, The curcuminoids extract of Curcuma xanthorriza roxb loaded solid lipid nanoparticles. Int. J. Sci. Res. 3(10), 852–856 (2014)Google Scholar
  42. 42.
    G. Baskar, A. Gurugulladevi, T. Nishanthini, B.G. Garrick, R. Aiswarya, M. Gopinath, Synthesis of phytonanocomposite of zinc oxide by Ixora coccinea Linn for Cancer treatment. J. Inorg. Organomet. Polym Mater. 26(4), 876–880 (2016)CrossRefGoogle Scholar
  43. 43.
    X. Wang, Y. Wang, K. Wei, N. Zhao, S. Zhang, J. Chen, Drug distribution within poly (ɛ-caprolactone) microspheres and in vitro release. J. Mater. Process. Technol. 209(1), 348–354 (2009)CrossRefGoogle Scholar
  44. 44.
    R. Lobo, K.S. Prabhu, A. Shirwaikar, A. Shirwaikar, Curcuma zedoaria Rosc.(white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. J. Pharm. Pharmacol. 61(1), 13–21 (2009)CrossRefGoogle Scholar
  45. 45.
    J.P. Raval, D.R. Naik, K.A. Amin, P.S. Patel, Controlled-release and antibacterial studies of doxycycline-loaded poly (ε-caprolactone) microspheres. J. Saudi Chem. Soc. 18(5), 566–573 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International and Inter University Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia
  2. 2.School of BiosciencesMahatma Gandhi UniversityKottayamIndia
  3. 3.School of Pure and Applied PhysicsMahatma Gandhi UniversityKottayamIndia
  4. 4.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations