Advertisement

Rapid Dilapidation of Alcohol Using Magnesium Oxide and Magnesium Aspartate based Nanostructures: A Raman Spectroscopic and Molecular Simulation Approach

  • D. Durgalakshmi
  • R. Ajay Rakkesh
  • Syed Kamil
  • S. Karthikeyan
  • S. BalakumarEmail author
Article

Abstract

Magnesium in the form of magnesium sulphate, magnesium oxide, magnesium hydroxide, and magnesium carbonate magnesium was conventionally in use as an effective antidepressant component. However, the concentration of these materials was high, varying from 150 to 500 mg per day. In recent days, nano-formulation of drugs is of high great interest due to its higher performance compare to the bulk structure. In the present work, MgO nanoparticle of size less than 10 nm have been synthesized by the wet chemical method with a sintering condition of 400 °C for 3 h. Magnesium aspartate was prepared from aspartic acid by modifying the prepared MgO nanoparticles. In vitro ethanol dilapidation studies at a various time interval and molecular docking interaction studies of MgO and Magnesium aspartate with NMDA receptors confirm that, these nanostructures compounds are suggestible as supplements for magnesium deficient and alcohol-induced depression.

Graphical Abstract

Keywords

MgO Nanoparticle Aspartate Sol–gel Raman NMDA 

Notes

Acknowledgements

One of the authors D. Durgalakshmi gratefully acknowledges DST-INSPIRE Faculty Fellowship under the sanction DST/INSPIRE/04/2016/000845 for their funding. S. Balakumar acknowledges Department of Biotechnology (DBT) for their project funding under the sanction BT/PR8236/NNT/28/669.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10904_2019_1105_MOESM1_ESM.docx (159 kb)
Supplementary material 1 (DOCX 159 KB)

References

  1. 1.
    K. Neff, Self-compassion: an alternative conceptualization of a healthy attitude toward oneself. Self Identity 2(2), 85–101 (2003)CrossRefGoogle Scholar
  2. 2.
    E. Diener, E.M. Suh, R.E. Lucas, H.L. Smith, Subjective well-being: three decades of progress. Psychol. Bull. 125(2), 276 (1999)CrossRefGoogle Scholar
  3. 3.
    C.E. Ross, Social Causes of Psychological Distress. (Taylor & Francis, Routledge, 2017)Google Scholar
  4. 4.
    A. Anand, Understanding depression among older adults in six low-middle income countries using WHO-SAGE survey, Behav. Health 1, 2 (2015)Google Scholar
  5. 5.
    M. Marcus, M.T. Yasamy, M. van Ommeren, D. Chisholm, S. Saxena, Depression: a global public health concern. WHO Dep. Ment. Health Subst. Abus. 1, 6–8 (2012)Google Scholar
  6. 6.
    S. Moussavi, S. Chatterji, E. Verdes, A. Tandon, V. Patel, B. Ustun, Depression, chronic diseases, and decrements in health: results from the World Health Surveys. The Lancet 370(9590), 851–858 (2007)CrossRefGoogle Scholar
  7. 7.
    World Health Organization, World Health Organization, Management of substance abuse, global status report on alcohol and health, 2014, World Health Organization (2014)Google Scholar
  8. 8.
    S.P. Walker, T.D. Wachs, J.M. Gardner, B. Lozoff, G.A. Wasserman, E. Pollitt, J.A. Carter, International Child Development Steering Group, Child development: risk factors for adverse outcomes in developing countries. The Lancet 369(9556), 145–157 (2007)CrossRefGoogle Scholar
  9. 9.
    I.M. Bennett, W. Schott, S. Krutikova, J.R. Behrman, Maternal mental health, and child growth and development, in four low-income and middle-income countries, J. Epidemiol. Community Health 70, 168–173 (2014) (jech-2014-205311)CrossRefGoogle Scholar
  10. 10.
    J.A. McCain, Antidepressants and suicide in adolescents and adults: a public health experiment with unintended consequences? Pharm. Ther. 34(7), 355 (2009)Google Scholar
  11. 11.
    S.-M. Wang, C. Han, S.-J. Lee, T.-Y. Jun, A.A. Patkar, P.S. Masand, C.-U. Pae, Efficacy of antidepressants: bias in randomized clinical trials and related issues, Expert Rev. Clin. Pharmacol. 2017, 1–11 (2017)Google Scholar
  12. 12.
    G.A. Eby, K.L. Eby, Rapid recovery from major depression using magnesium treatment. Med. Hypotheses 67(2), 362–370 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Y.G. Zorbas, K.K. Kakuris, Y.F. Federenko, V.A. Deogenov, Utilization of magnesium during hypokinesia and magnesium supplementation in healthy subjects. Nutrition 26(11), 1134–1138 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    T. Yary, S.M. Lehto, T. Tolmunen, T.-P. Tuomainen, J. Kauhanen, S. Voutilainen, A. Ruusunen, Dietary magnesium intake and the incidence of depression: a 20-year follow-up study. J. Affect. Disord. 193, 94–98 (2016)PubMedCrossRefGoogle Scholar
  15. 15.
    G.A. Eby, K.L. Eby, Magnesium for treatment-resistant depression: a review and hypothesis. Med. Hypotheses 74(4), 649–660 (2010)PubMedCrossRefGoogle Scholar
  16. 16.
    M.-L. Derom, C. Sayn-Orea, J.M. Martnez-Ortega, M.A. Martnez-Gonzlez, Magnesium and depression: a systematic review. Nutr. Neurosci. 16(5), 191–206 (2013)PubMedCrossRefGoogle Scholar
  17. 17.
    S.A. Walling, J.L. Provis, M.-B. Cements, A journey of 150 years, and cements for the future? Chem. Rev. 116(7), 4170–4204 (2016)PubMedCrossRefGoogle Scholar
  18. 18.
    C.U. Singh, J.R. Nulu, D. Woody, Pharmaceutical compositions for treating pain associated with dysmenorrhea, Google Patents (2015)Google Scholar
  19. 19.
    M. Levite, Glutamate receptor antibodies in neurological diseases, J. Neural Transm. 121(8), 1029–1075 (2014)PubMedCrossRefGoogle Scholar
  20. 20.
    M. de Lourdes Lima, T. Cruz, J.C. Pousada, L.E. Rodrigues, K. Barbosa, V. Canguçu, The effect of magnesium supplementation in increasing doses on the control of type 2 diabetes, Diabetes Care 21(5), 682–686 (1998)CrossRefGoogle Scholar
  21. 21.
    M.M. Zobitz, J.R. Poindexter, C.Y. Pak, Magnesium bioavailability from magnesium citrate and magnesium oxide. AU—Lindberg, JS, J. Am. Coll. Nutr. 9(1), 48–55 (1990)PubMedCrossRefGoogle Scholar
  22. 22.
    C.M. Moore, O. Staples, R.W. Jenkins, T.J. Brooks, T.A. Semelsberger, A.D. Sutton, Acetaldehyde as an ethanol derived bio-building block: an alternative to Guerbet chemistry. Green Chem. 19(1), 169–174 (2017)CrossRefGoogle Scholar
  23. 23.
    H.G. Marrero, S.N. Treistman, J.R. Lemos, Ethanol effect on BK channels is modulated by magnesium. Alcohol. Clin. Exp. Res. 39(9), 1671–1679 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    A.F. Macchione, M. Culleré, B. Haymal, P. Abate, J.C. Molina, P-20 perinates associate ethanol’s sensory cues with the drug’s depressive respiratory effects: latter re-exposure to ethanol odor generates conditioned breathing depression, Alcohol Alcohol. 50(suppl_1), i50–i50 (2015)Google Scholar
  25. 25.
    S. Spiga, G. Talani, G. Mulas, V. Licheri, G.R. Fois, G. Muggironi, N. Masala, C. Cannizzaro, G. Biggio, E. Sanna, Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats, Proc. Natl. Acad. Sci. 111(35), E3745–E3754 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    O. Pierrefiche, Long term depression in rat hippocampus and the effect of ethanol during fetal life. Brain Sci. 7(12), 157 (2017)PubMedCentralCrossRefGoogle Scholar
  27. 27.
    H.S. Kim, H.W. Kim, Fabrication and Raman studies of MgO/SnO2 core-shell heteronanowires. Acta Phys. Polon. Ser. A Gener. Phys. 116(1), 58 (2009)CrossRefGoogle Scholar
  28. 28.
    K. Krishnamoorthy, J.Y. Moon, H.B. Hyun, S.K. Cho, S.-J. Kim, Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J. Mater. Chem. 22(47), 24610–24617 (2012)CrossRefGoogle Scholar
  29. 29.
    J.T. Navarrete, V. Hernandez, F.J. Ramirez, IR and Raman spectra of l-aspartic acid and isotopic derivatives. Biopolymers 34(8), 1065–1077 (1994)CrossRefGoogle Scholar
  30. 30.
    J.T.L.p. Navarrete, V. Hernandez, F.J. Ramirez, Vibrational study of aspartic acid and glutamic acid dipeptides. J. Mol. Struct. 348, 249–252 (1995)CrossRefGoogle Scholar
  31. 31.
    S. Karthikeyan, S. Chinnathambi, D. Velmurugan, G. Bharanidharan, S. Ganesan, Insights into the binding of 3-(1-phenylsulfonyl-2-methylindol-3-ylcarbonyl) propanoic acid to bovine serum albumin: Spectroscopy and molecular modelling studies. Nano Biomed Eng 7, 1–6 (2015)CrossRefGoogle Scholar
  32. 32.
    F. Li, Z. Men, S. Li, S. Wang, Z. Li, C. Sun, Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 189, 621–624 (2018)CrossRefGoogle Scholar
  33. 33.
    N. Takezawa, C. Hanamaki, H. Kobayashi, The mechanism of dehydrogenation of ethanol on magnesium oxide. J. Catal. 38(1–3), 101–109 (1975)CrossRefGoogle Scholar
  34. 34.
    P. Liu, X. Zhu, S. Yang, T. Li, E.J.M. Hensen, On the metal-support synergy for selective gas-phase ethanol oxidation over MgCuCr2O4 supported metal nanoparticle catalysts. J. Catal. 331, 138–146 (2015)CrossRefGoogle Scholar
  35. 35.
    W.E. Taifan, T. Bučkob, J. Baltrusaitis, Catalytic conversion of ethanol to 1, 3-butadiene on MgO: a comprehensive mechanism elucidation using DFT calculations. J. Catal. 346, 78–91 (2017)CrossRefGoogle Scholar
  36. 36.
    S.L. Parrott, J. Rogers Jr., J. White, The decomposition of ethanol, propanol and acetic acid chemisorbed on magnesium oxide. Appl. Surf. Sci. 1(4), 443–454 (1978)CrossRefGoogle Scholar
  37. 37.
    N. Takezawa, H. Kobayashi, Hydrogen transfer reaction between ethanol and acetone over magnesium oxide. J. Catal. 73(1), 120–127 (1982)CrossRefGoogle Scholar
  38. 38.
    M.J. Gines, E. Iglesia, Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium. J. Catal. 176(1), 155–172 (1998)CrossRefGoogle Scholar
  39. 39.
    F. Fan, J.A. Lorenzen, B.V. Plapp, An aspartate residue in yeast alcohol dehydrogenase I determines the specificity for coenzyme. Biochemistry 30(26), 6397–6401 (1991)PubMedCrossRefGoogle Scholar
  40. 40.
    L. Hipolito, M.J. Sanchez, A. Polache, L. Granero, Brain metabolism of ethanol and alcoholism: an update. Curr. Drug Metabol. 8(7), 716–727 (2007)CrossRefGoogle Scholar
  41. 41.
    D. Liu, R. Gharavi, M. Pitta, M. Gleichmann, M.P. Mattson, Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol. Med. 11(1), 28–42 (2009)CrossRefGoogle Scholar
  42. 42.
    D. Uematsu, J.H. Greenberg, M. Reivich, A. Karp, Cytosolic free calcium and NAD/NADH redox state in the cat cortex during in vivo activation of NMDA receptors. Brain Res. 482(1), 129–135 (1989)PubMedCrossRefGoogle Scholar
  43. 43.
    N.W. Kleckner, R. Dingledine, Regulation of hippocampal NMDA receptors by magnesium and glycine during development, Brain Res. Mol. Brain Res. 11(2), 151–159 (1991)PubMedGoogle Scholar
  44. 44.
    J.z. Nagy, Alcohol related changes in regulation of NMDA receptor functions. Curr. Neuropharmacol. 6(1), 39–54 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    D. Ron, J. Wang, The NMDA Receptor and Alcohol Addiction, Biology of the NMDA Receptor (CRC Press, Boca Raton, 2009), pp. 59–78Google Scholar
  46. 46.
    D.P. Srebro, S.M. Vučković, K.R.S. Vujović, M. Prostran, TRPA1, NMDA receptors and nitric oxide mediate mechanical hyperalgesia induced by local injection of magnesium sulfate into the rat hind paw. Physiol. Behav. 139, 267–273 (2015)PubMedCrossRefGoogle Scholar
  47. 47.
    L. Squire, D. Berg, F.E. Bloom, S. Du Lac, A. Ghosh, N.C. Spitzer, Fundamental Neuroscience (Academic Press, Cambridge, 2012)Google Scholar
  48. 48.
    R.M. Sapolsky, Stress, The Aging Brain and the Mechanisms of Neuron Death CAMBRIDGE [Mass.], (The MIT Press, Cambridge, 1992), p. 192Google Scholar
  49. 49.
    J.L. Calton, W.A. Wilson, S.D. Moore, Magnesium-dependent inhibition of N-methyl-d-aspartate receptor-mediated synaptic transmission by ethanol. J. Pharmacol. Exp. Ther. 287(3), 1015–1019 (1998)PubMedPubMedCentralGoogle Scholar
  50. 50.
    European Food Safety Authority (EFSA), Opinion of the scientific panel on dietetic products, nutrition and allergies (NDA) a request from the commission related to the tolerable upper intake level of vitamin C (L-Ascorbic acid, its calcium, potassium and sodium salts and L-ascorbyl-6-palmitate). EFSA J. 59, 1–21 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. Durgalakshmi
    • 1
    • 2
  • R. Ajay Rakkesh
    • 3
  • Syed Kamil
    • 1
  • S. Karthikeyan
    • 2
  • S. Balakumar
    • 1
    Email author
  1. 1.National Centre for Nanoscience and NanotechnologyUniversity of MadrasChennaiIndia
  2. 2.Department of Medical PhysicsAnna UniversityChennaiIndia
  3. 3.CAS in Crystallography and BiophysicsUniversity of MadrasChennaiIndia

Personalised recommendations