Rapid Development of Activated Carbon and ZnO Nanoparticles via Green Waste Conversion Using Avocado Fruit Peel Powder and its High Performance Efficiency in Aqueous Dye Removal Application

  • Kamaraj MurugesanEmail author
  • Kidane Tareke
  • Meron Gezehegn
  • Muluken Kebede
  • Aschale Yazie
  • Gemechu Diyana


The present study focused to evaluate the utility of avocado fruit peel waste material for the development of activated carbon and ZnO nanoparticles for water treatment applications. Green synthesized activated carbon and ZnO nanoparticles using avocado fruit peel as a substrate was characterized using different techniques including FESEM, TEM, EDX, XRD and FTIR. In addition, further investigation was carried out to find their efficiency of its application for removal of selective dyes such as Congo red, Crystal violet, Saffranin, Methylene orange and Malachite green in aqueous solution through adsorption and photocatalytic activity respectively. 99.9% dye removal was observed in the column experiment condition, where, 100 mg L−1 concentrations of selective dye solutions were passed through the column (7.9 × 1.2 cm) filled with 50 mg of synthesized activated carbon at the flow rate of 6 drops/min. Green synthesized ZnO nanoparticles exhibited efficient photocatalytic activity of 70–98% against above mentioned selective dyes under the sunlight irradiation for the experimental condition which contains 20 mg of ZnO-NPs and 50 mL (30 mg L−1) of each dye solution. Further studies are recommended to elucidate the detailed mechanism of this avocado fruit peel powder in proposed materials conversion and using these materials as an agent for dye removal applications.


Avocado Waste conversion Water treatment Dye removal Productive materials 



Authors are thankful to Addis Ababa Science and Technology University, Ethiopia for providing partial financial support (senior research project funding scheme- Grant Reference No-AASTU-SSRF-CBCE-BT-2017-2) and lab facilities for this work.

Compliance with Ethical Standards

Conflict of interest

The authors did not declare any conflict of interest.


  1. 1.
    G. Crini, Biores. Technol. 97, 1061–1085 (2006)Google Scholar
  2. 2.
    S.T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, H. Wang, J. Colloid Interface Sci. 359, 24–29 (2011)PubMedGoogle Scholar
  3. 3.
    M. Roosta, M. Ghaedi, N. Shokri, A. Daneshfar, R. Sahraei, A. Asghari, Spectrochim. Acta A 18, 55–65 (2014)Google Scholar
  4. 4.
    K. Thenmozhi, A.S.S. Stanly, J. Mol. Struct. 1125, 358–365 (2016)Google Scholar
  5. 5.
    M. Ghaedi, A.M. Ghaedi, F. Abdi, M. Roosta, A. Vafaei, A. Asghari, Ecotoxicol. Environ. Saf. 96, 110–117 (2013)PubMedGoogle Scholar
  6. 6.
    K. Mohanty, D. Das, M.N. Biswas, Adsorption 12(2), 119–132 (2006)Google Scholar
  7. 7.
    M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Ultrason. Sonochem. 21, 242–252 (2014)PubMedGoogle Scholar
  8. 8.
    J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sanchez-Polo, J. Environ. Manag. 85, 833–846 (2007)Google Scholar
  9. 9.
    M. Moyo, E. Mutare, F. Chigondo, B.C. Nyamunda, Int. J. Res. Rev. Appl. Sci. 13, 486–494 (2012)Google Scholar
  10. 10.
    S. Olusegun, E. Ugba, Int. J. Comput. Eng. Manag. 16, 21–26 (2013)Google Scholar
  11. 11.
    M. Kamaraj, P. Umamaheswari, J. Mater. Environ. Sci. 8, 2019–2025 (2017)Google Scholar
  12. 12.
    G. Selvaraju, N.K.A. Bakar, J. Clean. Prod. 141, 989–999 (2017)Google Scholar
  13. 13.
    A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A 328, 8–26 (2010)Google Scholar
  14. 14.
    A. Alshehri, M.A. Malik, Z. Khan, S.A. Al-Thabaiti, N. Hasan, RSC Adv. 7, 25149–25159 (2017)Google Scholar
  15. 15.
    M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Spectrochim. Acta A 143, 304–308 (2015)Google Scholar
  16. 16.
    H. Agarwal, S. VenkatKumar, S. Rajeshkumar, Res. Eff. Tech. 3, 406–413 (2017)Google Scholar
  17. 17.
    C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, Acta A 90, 78–84 (2012)Google Scholar
  18. 18.
    C.C. Chen, J. Mol. Catal. A 264, 82–92 (2007)Google Scholar
  19. 19.
    H. Mirzaei, M. Darroudi, Ceram. Int. 43, 907–914 (2017)Google Scholar
  20. 20.
    J. Pulit-prociak, J. Chwastowski, A. Kucharski, M. Banach, Appl. Surf. Sci. 385, 543–553 (2016)Google Scholar
  21. 21.
    K.S. Prasad, P. Gandhi, K. Selvaraj, Appl. Surf. Sci. 317, 1052–1059 (2014)Google Scholar
  22. 22.
    M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, R. Khosravi, Adv. Powder Technol. 28, 122–130 (2017)Google Scholar
  23. 23.
    J.A.T. Pennington, R.A. Fisher, J. Food Compost. Anal. 22, 23–31 (2009)Google Scholar
  24. 24.
    E.M. Rotta, D.R.D. Morais, P.B.F. Biondo, V.G.D. Santos, M. Matsushita, J.V. Visentainer, Acta Sci. Technol. 38, 23–29 (2016)Google Scholar
  25. 25.
    A.F. Vinha, J. Moreira, S.V.P. Barreira, J. Agri Sci. 5, 100–109 (2013)Google Scholar
  26. 26.
    A.S. Hasna, S. Rajeshwari, M. Kamaraj, R. Venckatesh, Bioinspir. Biomim. Nanobiomater. 5, 85–90 (2016)Google Scholar
  27. 27.
    S. Rajeshwari, R. Venckatesh, G. Gowri, Sangeetha, Int. J. Eng. Sci. Technol. 2, 2418–2427 (2010)Google Scholar
  28. 28.
    M. Kamaraj, K.S. Ranjith, S. Rajeshwari, R.T. Rajendrakumar, A.S. Hasna, J. Environ. Sci. 26, 2362–2368 (2014)Google Scholar
  29. 29.
    M. Asadullah, M.A. Rahman, M.A. Motin, M.B. Sultan, J. Surf. Sci. Technol. 23, 73–80 (2007)Google Scholar
  30. 30.
    M. Molina-Sabio, F. Rodriguez-Reinoso, Colloids Surf. A 241, 15–25 (2004)Google Scholar
  31. 31.
    N.R. Khalili, M. Campbell, G. Sandi, J. Golas, Carbon 38, 1905–1915 (2000)Google Scholar
  32. 32.
    Q. Qian, M. Machida, H. Tatsumoto, Biores. Technol. 98, 353–360 (2007)Google Scholar
  33. 33.
    M. Smisek, S. Cerney, Activated Carbon (Elsevier, New York, 1970), pp. 10–48Google Scholar
  34. 34.
    S.D. Khattri, M.K. Singh, Adsorpt. Sci. Technol. 17, 269–282 (1999)Google Scholar
  35. 35.
    I. Sulistianti, Y.K. Krisnandi, I. Moenandar, IOP Conf. Ser. 012041, 1–6 (2017)Google Scholar
  36. 36.
    J. Zawadski, Carbon 26, 603–611 (1988)Google Scholar
  37. 37.
    B. Sivakumar, C. Kannan, S. Karthikeyan, Rasayan J. Chem. 5, 321–327 (2012)Google Scholar
  38. 38.
    R. Kailappan, L. Gothandapani, R. Viswanathan, Biores. Technol. 75, 241–243 (2000)Google Scholar
  39. 39.
    M. Manokari, C.P. Ravindran, M.S. Shekhawat, World Sci. News 30, 117–128 (2016)Google Scholar
  40. 40.
    K. Zelechowska, J. Biotech. Comput. Biol. Bionanotechnol. 95, 150–159 (2014)Google Scholar
  41. 41.
    P. Rajiv, S. Rajeshwari, R. Venckatesh, Spectrochim. Acta A 112, 384–387 (2013)Google Scholar
  42. 42.
    V. Eskizeybek, F. Sari, H. Gulce, A.Gulce,A. Avci, Appl. Catal. B 119–120, 197–206 (2012)Google Scholar
  43. 43.
    O. Lupan, L. Chow, G. Chao, H. Heinrich, Chem. Phy. Lett. 465, 249–253 (2008)Google Scholar
  44. 44.
    H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grabel, H. Weller, Langmuir 21, 1931–1936 (2005)PubMedGoogle Scholar
  45. 45.
    R. Nagaraja, K. Nagaraju, C.R. Girija, B.M. Nagabhushana, Powder Technol. 215–216, 91–97 (2012)Google Scholar
  46. 46.
    A.E. Cassano, O.M. Alfano, Catal. Today 58, 167–197 (2000)Google Scholar
  47. 47.
    S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Water Air Soil Pollut. 215, 1–35 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, College of Biological and Chemical EngineeringAddis Ababa Science and Technology UniversityAddis AbabaEthiopia

Personalised recommendations