Advertisement

Zinc Oxide–Nanoclinoptilolite as a Superior Catalyst for Visible Photo-Oxidation of Dyes and Green Synthesis of Pyrazole Derivatives

  • Roya Mohammadzadeh KakhkiEmail author
  • Azam Karimian
  • Hossein Hasan-nejad
  • Fatemeh Ahsani
Article

Abstract

In this study a new ZnO doped nanoclinoptilolite was synthesized and the morphology and properties of this new nanocomposite were studied using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Field emission scanning electron microscopy (FESEM). The effective substance (ZnO) amount on clinoptilolite substrate was also determined by EDX method. Natural based nanocomposites are low cost and high efficient materials for photo oxidation of organic dyes and also synthesis of organic compounds. The ability of this new nanocomposite in photodegradation of methylene blue (MB) as a cationic dye and mixture cationic- anionic dyes (methylene blue and methyl red) under visible light irradiation was studied. The effect of various important factors on the degradation rate was studied. Under optimal conditions, the degradation efficiency of MB was achieved about 88% in 40 min. A first order kinetic was observed for the degradation of MB. Also, this nanocomposite was used as an ecofriendly and green nanocatalyst for the synthesis of pyrazole derivatives by condensation of substituted phenyl hydrazines with 1,3-diketone/ketoester with high performance. The reaction of synthesis of 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (3a) in aqueous medium gave the required product in high yield (99%) and in shorter reaction time (10 min).

Keywords

Zinc oxide–nanoclinoptilolite Photo-oxidation Methylene blue Methyl red Nanocatalyst Pyrazole derivatives Water Green synthesis 

Notes

References

  1. 1.
    T. Ben-Mosh, I. Dror, B. Berkwitz, Appl. Catal. B 85, 207–211 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Sharma, B. Thakur, M. Naushad, A. Kumar, F.J. Stadler, S.M. Alfadul, Environ. Chem. Lett. 16, 113–146 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Naushad, G. Sharma, A. Kumar, S. Sharma, A.A. Ghfar, A. Bhatnagar, F.J. Stadler, M.R. Khan, Int. J. Biol. Macromolecules 106, 1–10 (2018)CrossRefGoogle Scholar
  4. 4.
    L.F. Liotta, M. Grunttadauria, G. Di Carlo, G. Perrini, V. Librando, J. Hazard. Mater. 162, 588–606 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    M. Janus, A.W. Morawski, Appl. Catal. B 75, 118–123 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Franco, M.C. Neves, M.M.L. Ribeiro Carrott, M.H. Mendonca, M.I. Pereira, O.C. Monteiro, J. Hazard. Mater. 161, 545–550 (2009)PubMedCrossRefGoogle Scholar
  7. 7.
    A. Nezamzadeh-Ejhieh, S. Hushmandrad, Appl. Catal. A 388, 149 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Nezamzadeh-Ejhieh, Z. Banan, Iran. J. Catal. 2(2), 77 (2012)Google Scholar
  9. 9.
    J. Saien, A.R. Soleymani, J. Ind. Eng. Chem. 18, 1683 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Nezamzadeh-Ejhieh, M. Amiri, Powder Technol. 235, 279 (2013)CrossRefGoogle Scholar
  11. 11.
    J.P. Wilcoxon, T.R. Thurston, J.E. Martin, Nanostruct. Mater. 12, 993–997 (1999)CrossRefGoogle Scholar
  12. 12.
    T. Charinpanitkul, P. Nartpochananon, T. Satitpitakun, J. Wilcox, T. Seto, Y. Otani, J. Ind. Eng. Chem. 18, 469 (2012)CrossRefGoogle Scholar
  13. 13.
    M.H. Habibi, R. Sheibani, J. Ind. Eng. Chem. 19, 161 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Wang, W. Mi, J. Tian, J. Dai, X. Wang, X. Liu, Composites B 45, 758 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Yu, Y. Wang, Y. Liu, C. Guo, Y. Hun, Mater. Lett. 100, 278 (2013)CrossRefGoogle Scholar
  16. 16.
    T.T. Vu, L. del Rıo, T. Valdés-Solís, G. Marbán, J. Hazard. Mater. 126, 246–247 (2013)Google Scholar
  17. 17.
    H. Benhebal, M. Chaib, A. Leonard, S.D. Lambert, M. Crine, Mater. Sci. Semicond. Process. 15, 264 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Nasser, A.B.M. Ali, B. Oskui, J. Reza, Iran. J. Chem. Chem. Eng. 28, 49 (2009)Google Scholar
  19. 19.
    G. Prieto, J. Zecevi, H. Friedrich, K.P. de Jong, P.E. de Jongh, Nat. Mater. 12, 34–39 (2013)PubMedCrossRefGoogle Scholar
  20. 20.
    C.T. Campbell, Acc. Chem. Res. 46, 1712–1719 (2013)PubMedCrossRefGoogle Scholar
  21. 21.
    A. Nezamzadeh-Ejhieh, M. Khorsandi, J. Hazard. Mater. 176, 629 (2010)CrossRefGoogle Scholar
  22. 22.
    N. Rajic, D. Stojakovi, N. Daneu, A. Recnik, J. Phys. Chem. Solids 72, 800 (2011)CrossRefGoogle Scholar
  23. 23.
    F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun, B. Xue, J. Hazard. Mater. 152, 1037–1044 (2008)PubMedCrossRefGoogle Scholar
  24. 24.
    R. Chatti, S.S. Rayalu, N. Dubey, N. Labhsetwar, S. Devotta, Sol. Energy Mater. Sol. Cells 91, 180–190 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Nezamzadeh-Ejhieh, Z. Salimi, Appl. Catal. A 390, 110 (2010)CrossRefGoogle Scholar
  26. 26.
    W. Song, G. Li, V.H. Grassian, S.C. Larsen, Environ. Sci. Technol. 39, 1214 (2005)PubMedCrossRefGoogle Scholar
  27. 27.
    M. Nikazar, K. Gholivand, K. Mahanpoor, Kinet. Catal. 48, 214 (2007)CrossRefGoogle Scholar
  28. 28.
    M. Baitimirova, R. Viter, J. Andzane, A. van der Lee, D. Voiry, I. Iatsunskyi, E. Coy, L. Mikoliunaite, S. Tumenas, K. Załęski, Z. Balevicius, I. Baleviciute, A. Ramanaviciene, A. Ramanavicius, S. Jurga, D. Erts, M. Bechelany, J. Phys. Chem. C 120, 23716 (2016)CrossRefGoogle Scholar
  29. 29.
    R.M. Kakhki, R. Tayebee, F. Ahsani, J. Mater. Sci. 28, 5941 (2017)Google Scholar
  30. 30.
    A. Karimian, J. Heterocycl. Chem. 55, 645–649 (2018)CrossRefGoogle Scholar
  31. 31.
    K.M. Arunasree, K.R. Roy, K. Anilkumar, A. Aparna, G.V. Reddy, P. Reddanna, Leuk. Res. 32, 855 (2008)PubMedCrossRefGoogle Scholar
  32. 32.
    P. Singh, M. Kaur, W. Holzer, Eur. J. Med. Chem. 45, 4968 (2010)PubMedCrossRefGoogle Scholar
  33. 33.
    S. Venkataraman, S. Jain, K. Shah, N. Upmanyu, Acta Polo Pharma Drug Res. 67, 361–366 (2010)Google Scholar
  34. 34.
    Y.R. Prasad, A.L. Rao, L. Prasoona, K. Murali, P.R. Kumar, Bioorg. Med. Chem. Lett. 15, 5030–5034 (2005)CrossRefGoogle Scholar
  35. 35.
    T. Karabasanagouda, A.V. Adhikari, M. Girisha, Ind. J. Chem. 48, 430–437 (2009)Google Scholar
  36. 36.
    A. Ozdemir, Z.G. Asim, Turk. J. Chem. 32, 529–538 (2008)Google Scholar
  37. 37.
    M.A. Nasseri, M. Salimi, A.A. Esmaeili, RSC Adv. 4, 61193 (2014)CrossRefGoogle Scholar
  38. 38.
    B. Parashar, A. Jain, S. Bharadwaj, V.K. Sharma, Med. Chem. Res. 21, 1692–1699 (2012)CrossRefGoogle Scholar
  39. 39.
    I. Rodriguez-ıznaga, A. Gomez, G. Rodrıguez-Fuentes, A. Benıtez, J. Aguilar, Serrano-Ballan, Microporous Mesoporous Mater. 53, 71 (2002)CrossRefGoogle Scholar
  40. 40.
    Y. Ren, F. Zhang, W. Hua, Y. Yue, Z. Gao, Catal. Today 148, 316e322 (2009)CrossRefGoogle Scholar
  41. 41.
    Q. Jiang, Z.Y. Wu, Y.M. Wang, Y. Cao, C.F. Zhou, J.H. Zhu, J. Mater. Chem. 16, 1536e1542 (2006)CrossRefGoogle Scholar
  42. 42.
    F. Iacomi, Surf. Sci. 532, 816e821 (2003)Google Scholar
  43. 43.
    M. Brazlauskas, S. Kitrys, Chin. J. Catal. 29, 25e30 (2008)CrossRefGoogle Scholar
  44. 44.
    A. Nezamzadeh-Ejhieh, M. Amiri, Powder Technol. 235, 279e288 (2013)CrossRefGoogle Scholar
  45. 45.
    R.S. Padilha, A.M. Ferrari-Limab, F.L. Seixasb, V.R. Batistelac, S.L. Fávarod, N. Hiokaa, N.R.C. Fernandes-Machadob, Chem. Eng. Trans. 32, 823–828 (2013)Google Scholar
  46. 46.
    C. Chen, J. Liu, P. Liu, B. Yu, Adv. Chem. Eng. Sci. 1, 9 (2011)CrossRefGoogle Scholar
  47. 47.
    O. Korkuna, R. Leboda, J. Skubiszewska-Zie, T. Vrublevs’ka, V.M. Gun’ko, J. Ryczkowski, Microporous Mesoporous Mater. 87, 243 (2006)CrossRefGoogle Scholar
  48. 48.
    D.W. Breck, Zeolite Molecular Sieves: Structure Chemistry and Uses (Wiley, New York, 1974)Google Scholar
  49. 49.
    A. Olad, B. Naseri, Prog. Org. Coat. 67, 233 (2010)CrossRefGoogle Scholar
  50. 50.
    M. Bahrami, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 30, 275e284 (2015)CrossRefGoogle Scholar
  51. 51.
    A. Tomašević, J. Ðaja, S. Petrović, E.E. Kiss, D. Mijin, Chem. Ind. Chem. Eng. Q. 15, 17 (2009)CrossRefGoogle Scholar
  52. 52.
    A.V. Rupa, D. Manikandan, D. Divakar, S. Revathi, M.E.L. Preethi, K. Shanthi, T. Sivakumar, Indian J. Chem. Technol. 14, 71 (2007)Google Scholar
  53. 53.
    M.A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater. 133, 226 (2006)PubMedCrossRefGoogle Scholar
  54. 54.
    G. Sharmaa, A. Kumar, S. Sharmac, A.H. Al-Muhtasebd, M. Naushade, A.A. Ghfare, T. Ahamade, F.J. Stadler, Sep. Purif. Technol. 211, 895 (2019)CrossRefGoogle Scholar
  55. 55.
    A.N. Rao, B. Sivasankar, V. Sadasivam, J. Mol. Catal. A 306, 77 (2009)CrossRefGoogle Scholar
  56. 56.
    G. Sharma, A. Kumar, S. Sharma, M. Naushad, T. Ahamad, S.I. Al-Saeedi, G.M. Al-Senani, N.S. Al-kadhi, F.J. Stadler, J. Mol. Liq. 272, 170Google Scholar
  57. 57.
    A. Nezamzadeh-Ejhieh, N. Moazzeni, J. Ind. Eng. Chem. (2013).  https://doi.org/10.1016/j.jiec.2013.01.006 CrossRefGoogle Scholar
  58. 58.
    M. Farbod, M. Khademalrasool, Powder Technol. 214, 344 (2011)CrossRefGoogle Scholar
  59. 59.
    P.K. Malik, S.K. Saha, Sep. Purif. Technol. 31, 241 (2003)CrossRefGoogle Scholar
  60. 60.
    L. Jing, L. Wang, Y. Zhao, R. Tan, X. Xing, T. Liu, W. Huang, Y. Luo, Z. Li, J. Chem. Res. 36, 691–696 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Roya Mohammadzadeh Kakhki
    • 1
    Email author
  • Azam Karimian
    • 1
  • Hossein Hasan-nejad
    • 1
  • Fatemeh Ahsani
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GonabadGonabadIran

Personalised recommendations