Nano-synthesis, Biological Efficiency and DNA Binding Affinity of New Homo-binuclear Metal Complexes with Sulfa Azo Dye Based Ligand for Further Pharmaceutical Applications
Abstract
Five novel nanometric homo-binuclear complexes have been synthesized by the reaction of Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) salts with a new azo dye 4-(2,4-dihydroxy-phenylazo)-N-thiazol-2-yl-benzenesulfonamide (H2L) with the aim to develop neoteric antitumor drugs. H2L has been prepared by coupling of sulfathiazole with resorcinol in order to comprise the bioactivities of sulfonamide part and azo group in the formed metal complexes which greatly enhance their bio-efficiencies. The ligand and complexes have been fully characterized using various spectral and analytical techniques. The obtained data indicated a dibasic tetradentate nature of ligand which coordinated via deprotonated phenolic oxygen, one azo group nitrogen, N-atom of thiazole ring, and sulfonamide oxygen forming tetrahedral geometry around the central metal ions. XRD data confirmed the crystalline nature of ligand and amorphous nature of the complexes. TEM images proved nanometeric size of complexes particles. The data of antimicrobial screening revealed that metal complexes are more potent than the azo dye ligand against varies micro-organisms. Anticancer activities of all compounds were evaluated against human liver carcinoma cells (HepG-2) and breast carcinoma cells (MCF-7). Cu(II) complex showed the highest anticancer activity (IC50 = 23.6 µg/ml) against HepG-2 cells. Co(II) complex displayed the greatest anticancer activity (IC50 of 7.67 µg/ml) contra MCF-7 cells. Electronic absorption and viscosity studies proved that H2L and complexes interact with DNA by intercalation binding and electrostatic force groove binding modes, respectively. The results of this study ascertain that Cu(II) and Co(II) complexes are very favorable candidates for further applications in cancer therapy.
Keywords
Nano-meter complexes Sulfathiazole Characterization Anticancer DNA bindingNotes
Acknowledgements
This paper contains the results and findings of a research project that is funded by King Abdulaziz City for Science and Technology (KACST) Grant No. 37–175.
Supplementary material
References
- 1.J. Feng, S. Zhang, W. Shi, Y. Zhang, Activity of sulfa drugs and their combinations against stationary phase B. burgdorferi in vitro. Antibiotics 6, 1–11 (2017)Google Scholar
- 2.D. Das, N. Sahu, S. Mondal, S. Roy, P. Dutta, S. Gupta, T.K. Mondal, C. Sinha, Structures, antimicrobial activity, DNA interaction and molecular docking studies of sulfamethoxazolyl-azo-acetylacetone and its nickel(II) complex. Polyhedron 99, 77–86 (2015)Google Scholar
- 3.J.-Y. Winum, A. Maresca, F. Carta, A. Scozzafava, C.T. Supuran, Poly pharmacology of sulfonamides: pazopanib, a multitargeted receptor tyrosine kinase inhibitor in clinical use, potently inhibits several mammalian carbonic anhydrases. Chem. Commun. 48, 8177–8179 (2012)Google Scholar
- 4.G. Choquet-Kastylevsky, T. Vial, J. Descotes, Allergic adverse reactions to sulfonamides. Curr. Allergy Asthma Rep. 2, 16–25 (2002)Google Scholar
- 5.G.C. Slatore, A.S. Tilles, Sulfonamide hypersensitivity. Immunol. Allergy Clin. N. Am. 24, 477–490 (2004)Google Scholar
- 6.M. Summan, A.E. Cribb, Novel non-labile covalent binding of sulfamethoxazole reactive metabolites to cultured human lymphoid cells. Chem. Biol. Interact. 142, 155–173 (2002)Google Scholar
- 7.J.H. Al-Fahemi, A.M. Khedr, I. Althagafi, N.M. El-Metwaly, F.A. Saad, H.A. Katouah, Green synthesis approach for novel benzenesulfonamide nanometer complexes with elaborated spectral, theoretical and biological treatments. Appl. Organomet. Chem.32, e4460 (2018)Google Scholar
- 8.E.M. Mabrouk, K.A. Al-Omary, A.S. Al-Omary, E.H. El-Mossalamy, Electrochemical and spectral studies of some sulfa drug azo dyes and their metal complexes in aqueous solution. J. Adv. Chem. 14, 6021–6032 (2018)Google Scholar
- 9.Z.H. Chohan, H.A. Shad, Sulfonamide-derived compounds and their transition metal complexes: synthesis, biological evaluation and X-ray structure of 4 –bromo-2-[(E)-{4-[(3,4-dimethylisoxazol-5 yl)sulfamoyl]phenyl}-iminiomethyl]phenolate. Appl. Organometal. Chem. 25, 591–600 (2011)Google Scholar
- 10.M.S. Iqbal, A.H. Khan, B.A. Loothar, I.H. Bukhari, Effect of derivatization of sulfamethoxazole and trimethoprim with copper and zinc on their medicinal value. Med. Chem. Res. 18, 31–42 (2009)Google Scholar
- 11.F.A. Saad, J.H. Al-Fahemi, H. El-Ghamry, A.M. Khedr, M.G. Elghalban, N.M. El-Metwaly, Elaborated spectral, modeling, QSAR, docking, thermal, antimicrobial and anticancer activity studies for new nanosized metal ion complexes derived from sulfamerazineazo dye. J. Ther. Anal.Calori. 131, 1249–1267 (2018)Google Scholar
- 12.P. Rani, K.V. Srivastava, A. Kumar, Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem. 39, 449–452 (2004)Google Scholar
- 13.M. Azam, S.I. Al-Resayes, S.M. Wabaidur, M. Altaf, B. Chaurasia, M. Alam, S.N. Shukla, P. Gaur, N.T.M. Albaqami, M.S. Islam, S. Park, Synthesis, structural characterization and antimicrobial activity of Cu(II) and Fe(III) complexes incorporating azo-azomethine ligand. Molecules 23, 1–13 (2018)Google Scholar
- 14.M. Tonelli, I. Vazzana, B. Tasso, V. Boido, F. Sparatore, M. Fermeglia, S.M. Paneni, P. Posocco, S. Pricl, P. Colla, C. Ibba, B. Secci, G. Collu, R. Loddo, Antiviral and cytotoxic activities of aminoarylazo compounds and aryltriazene derivatives. Bioorg. Med. Chem. 17, 4425–4440 (2009)Google Scholar
- 15.K.K. Upadhyay, S. Upadhyay, A. Kumar, K. Thapliyal, Synthesis, crystal structures and studies on Hg2+ sensing by the diazo derivatives of sulfathiazole and Sulfamethoxazole. J. Sulfur Chem. 33, 573–582 (2012)Google Scholar
- 16.G.G. Mohamed, M.A.M. Gad-Elkareem, Synthesis, characterization and thermal studies on metal complexes of new azo compounds derived from sulfa drugs. Spectrochim. Acta A 68, 1382–1387 (2007)Google Scholar
- 17.H. Cetisli, M. Karakus, E. Erdem, H. Deligoez, Synthesis, metal complexation and spectroscopic characterization of three new azo compounds. J. Incl. Phen. Macrocycl. Chem. 42, 187–191 (2002)Google Scholar
- 18.M.A. Ibrahim, Heterocyclo-substituted sulfa drugs: Part XI. Novel biologically active N-(piperidino-, morpholino-, piperazino-) dithiocarbamyl-azo dyes and their chelates. Phosphorus Sulfur Silicon Relat. Elem. 163, 219–251 (2000)Google Scholar
- 19.F.A. Saad, A.M. Khedr, Greener solid state synthesis of nano-sized mono and homo bi-nuclear Ni(II), Co(II) Mn(II), Hg(II), Cd(II) and Zn(II) complexes with new sulfa ligand as a potential antitumour and antimicrobial agents. J. Mol. Liq. 231, 572–579 (2017)Google Scholar
- 20.H. Li, G.-H. Lee, S.-M. Peng, The first one-dimensional coordination polymer containing O–H⋯F–Ni hydrogen bonding: crystal structure of [Ni3(dpa)4F2][Ni3(dpa)4(H2O)2](BF4)2·2CH3OH. Inorg. Chem. Commun. 6, 1–4 (2003)Google Scholar
- 21.R.M. Issa, A.M. Khedr, A. Tawfik, Binuclear mixed metal complexes of V(IV), Mo(III), and U(VI) o-cresolphthalein complexonates with other metal ions. Synth. React. Inorg. Met.-Org. Chem. 34, 1087–1104 (2004)Google Scholar
- 22.P. Nordell, P. Lincoln, Mechanism of DNA threading intercalation of binuclear Ru complexes: uni- or bimolecular pathways depending on ligand structure and binding density. J. Am. Chem. Soc. 127, 9670–9671 (2005)Google Scholar
- 23.A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 111, 3051–3058 (1989)Google Scholar
- 24.B. Macías, M.V. Villa, R. Lapresa, G. Alzuet, J. Hernández-Gil, F. Sanz, Mn(II) complexes with sulfonamides as ligands: DNA interaction studies and nuclease activity. J. Inorg. Biochem. 115, 64–71 (2012)Google Scholar
- 25.T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and antitumor activity assays. J. Immunol. Methods 65, 55–63 (1983)Google Scholar
- 26.S.M. Gomha, S.M. Riyadh, E.A. Mahmmoud, M.M. Elaasser, Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem. Heterocycl. Comp. 51, 1030–1038 (2015)Google Scholar
- 27.A.C. Scott, Laboratory Control of Antimicrobial therapy. In: J.G et al. eds. Practical Medical Microbiology, 13th edn. (Churchill Livingestone, Edinburgh, 1981)Google Scholar
- 28.M. Gaber, N.A. El-Wakiel, H. El-Ghamry, S.K. Fathalla, Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. J. Mol. Struct. 1076, 251–261 (2014)Google Scholar
- 29.W.J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)Google Scholar
- 30.K. Nakamoto, Infrared spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986)Google Scholar
- 31.K.Y. El-Baredie, Preparation and characterization of sulfadiazine schiff base complexes of Co(II), Ni(II), Cu(II), and Mn(II). Monatsh. Chem. 136, 1139–1155 (2005)Google Scholar
- 32.K. El-Baradie, R. El-Sharkawy, H. El-Ghamry, K. Sakai, Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfa drug azo dyes and their application for wastewater treatment. Spectrochim. Acta A 121, 180–187 (2014)Google Scholar
- 33.G.Q. Zhong, J. Shen, Q.Y. Jiang, Y.Q. Jia, M.J. Chen, Z.P. Zhang, Synthesis, characterization and thermal decomposition of SbIII-M-SbIII type trinuclear complexes of ethylenediamine-N, N, N′, N′-tetraacetate (M: Co(II), La(III), Nd(III), Dy(III)).J. Therm. Anal. Calorim. 92, 607–616 (2008)Google Scholar
- 34.J.R. Allan, W.C. Geddes, C.S. Hindle, A.E. Orr, Thermal analysis studies on pyridine carboxylic acid complexes of zinc(II). Thermochim. Acta C 153, 249–256 (1989)Google Scholar
- 35.M. Badea, A. Emandi, D. Marinescu, E. Cristurean, R. Olar, A. Braileanu, P. Budrugeac, E. Segal, Thermal stability of some azo-derivatives and their complexes. J. Therm. Anal. Calorim. 72, 525–531 (2033)Google Scholar
- 36.S. Gupta, S. Pal, A.K. Barik, A. Hazra, S. Roy, T.N. Mandal, S.-M. Peng, G.-H. Lee, M.Salah El Fallah, J. Tercero, S.K. Kar, Synthesis, characterization and magnetostructural correlation studies on three binuclear copper complexes of pyrimidine derived Schiff base ligands. Polyhedron 27, 2519–2528 (2008)Google Scholar
- 37.P.N. Patel, D.J. Patel, H.S. Patel, Synthesis, spectroscopic, thermal and biological aspects of drug-based copper(II) complexes. Appl. Organomet. Chem. 25, 454–463 (2011)Google Scholar
- 38.A.A. Osowole, E.J. Akpan, Synthesis, spectroscopic characterisation, in-vitro anticancer and antimicrobial activities of some metal(ii) complexes of 3-{4, 6-dimethoxy pyrimidinyl) iminomethyl naphthalen-2-ol. Eur. J. Appl. Sci. 4, 14–20 (2012)Google Scholar
- 39.M.M. Al-Ne’aimi, M.M. Al-Khuder, Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties. Spectrochim. Acta A 105, 365–373 (2013)Google Scholar
- 40.D.X. West, A. Nassar, F.A. El-Saied, M.I. Ayad, Nickel(II) complexes of 2-aminoacetophenone N(4)-substituted thiosemicarbazones. Transit. Met. Chem. 23, 423–427 (1998)Google Scholar
- 41.W. Al Zoubi, A.A.S. Al-Hamdani, S.D. Ahmed, Y.G. Ko, Synthesis, characterization, and biological activity of Schiff bases metal complexes. J. Phys. Org. Chem. 31, 3752–3759 (2018)Google Scholar
- 42.D.N. Kumar, B.S. Garg, Synthesis and spectroscopic studies of complexes of zinc(II) with N2O2 donor groups. Spectrochim. Acta A 64, 141–147 (2006)Google Scholar
- 43.T.M.A. Ismail, Mononuclear and binuclear Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of schiff-base ligands derived from 7-formyl-8-hydroxyquinoline and diaminonaphthalenes. J. Coord. Chem. 58, 141–151 (2005)Google Scholar
- 44.A.A. Fahem, Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation. Spectrochim. Acta A 88, 10–22 (2012)Google Scholar
- 45.J.S. Ritch, T. Chivers, K. Ahmad, M. Afzaal, P. O’Brien, Synthesis, structures, and multinuclear NMR spectra of tin(II) and lead(II) complexes of tellurium-containing imidodiphosphinate ligands: preparation of two morphologies of phase-pure PbTe from a single-source precursor. Inorg. Chem. 49, 1198–1205 (2010)Google Scholar
- 46.F.A. Saad, M.G. Elghalban, N. El-Metwaly, H. El-Ghamry, A.M. Khedr, Density functional theory/B3LYP study of nanometric 4-(2,4-dihydroxy-5-formylphen-1-ylazo)-N-(4-methylpyrimidin-2-yl)benzenesulfonamide complexes: quantitative structure–activity relationship, docking, spectral and biological investigations. Appl. Organomet. Chem. 31, 3721–3735 (2017)Google Scholar
- 47.J.K. Hui, M.J. MacLachlan, Metal-containing nanofibers via coordination chemistry. Coord. Chem. Rev. 254, 2363–2390 (2010)Google Scholar
- 48.A. Salimi, J.R. Halla, S. Soltanian, Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity. Biophys. Chem. 130, 122–131 (2007)Google Scholar
- 49.A.S. Sultan, H. Brim, Z.A. Sherif, Co-over expression of Janus kinase 2 and signal transducer and activator of transcription 5a promotes differentiation of mammary cancer cells through reversal of epithelial–mesenchymal transition. Cancer Sci. 2, 272–279 (2008)Google Scholar
- 50.S.H. Etaiw, S.A. Amer, M.M. El-Bendary, A Mixed valence copper cyanide 3D-supramolecular coordination polymer containing 1,10-phenathorline ligand as a potential antitumor agent, effective catalyst and luminescent material. J. Inorg. Organomet. Polym Mater. 21, 662–669 (2011)Google Scholar
- 51.A.F. Shoair, A.A. El-Bindary, N.A. El-Ghamaz, G.N. Rezk, Synthesis, characterization, DNA binding and antitumor activities of Cu(II) complexes. J. Mol. Liq. 269, 619–638 (2018)Google Scholar
- 52.E.A. Bakr, G.B. Al-Hefnawy, M.K. Awad, H.H. Abd-Elatty, M.S. Youssef, New Ni (II), Pd (II) and Pt (II) complexes coordinated to azo pyrazolone ligand with a potent anti-tumor activity: synthesis, characterization, DFT and DNA cleavage studies. Appl. Organomet. Chem. 32, e4104 (2018)Google Scholar
- 53.X. Riera, V. Moreno, C.J. Ciudad, V. Noe, M. Font-Bardía, X. Solans, Complexes of Pd(II) and Pt(II) with 9-aminoacridine: reactions with DNA and study of their antiproliferative activity. Bioinorg. Chem. Appl. 2007, 1–15 (2007)Google Scholar
- 54.M. Gaber, A.M. Khedr, M. Elsharkawy, Characterization and thermal studies of nano-synthesized Mn(II), Co(II), Ni(II) and Cu(II) complexes with adipohydrazone ligand as new promising antimicrobial and antitumor agents. Appl. Organomet. Chem. 31, 3885–3898 (2017)Google Scholar
- 55.W.H. Mahmoud, F.N. Sayed, G.G. Mohamed, Azo dye with nitrogen donor sets of atoms and its metal complexes: synthesis, characterization, DFT, biological, anticancer and Molecular docking studies. Appl. Organomet. Chem. 32, e4347 (2018)Google Scholar
- 56.A. Kulkarni, S.A. Patil, P.S. Badami, Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with Schiff bases of coumarin derivatives. Eur. J. Med. Chem. 44, 2904–2912 (2009)Google Scholar
- 57.K.N. Thimmaiah, W.D. Lloyd, G.T. Chandrappa, Stereochemistry and fungi toxicity of complexes of p-anisaldehydethiosemicarbazone with Mn(II), Fe(II), Co(II) and Ni(II). Inorg. Chim. Acta 106, 81–83 (1985)Google Scholar
- 58.M.A. Phanib, S.D. Dhumwad, Synthesis, characterization and biological studies of CoII, NiII, CuII and ZnII complexes of Schiff bases derived from 4-substituted carbostyrils[quinolin2(1H)-ones]. Trans. Met. Chem. 32, 1117–1125 (2007)Google Scholar
- 59.M.I. Abou-Dobara, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, S.M. Morgan, Thermal properties, antimicrobial activity of azo complexes and ultrastructure study of some affected bacteria. J. Microbial. Biochem. Technol. S3, 1–13 (2014)Google Scholar
- 60.T. Hirohama, Y. Kuranuki, E. Ebina, T. Sugizaki, H. Arii, M. Chikira, P.T. Selvi, M. Palaniandavar, Copper(II) complexes of 1,10-phenanthroline-derived ligands: studies on DNA binding properties and nuclease activity. J. Inorg. Biochem. 99, 1205–1219 (2005)Google Scholar
- 61.T.R. Li, Z.Y. Yang, B.D. Wang, D.D. Qin, Synthesis, characterization, antioxidant activity and DNA-binding studies of two rare earth(III) complexes with naringenin-2-hydroxy benzoyl hydrazone ligand. Eur. J. Med. Chem. 43, 1688–1695 (2008)Google Scholar
- 62.N. Chitrapriya, V. Mahalingam, M. Zeller, K. Natarajan, Synthesis, characterization, crystal structures and DNA binding studies of nickel(II) hydrazone complexes. Inorg. Chim. Acta 363, 3685–3693 (2010)Google Scholar
- 63.F.H. Li, G.H. Zhao, H.X. Wu, H. Lin, X.X. Wu, S.R. Zhu, H.K. Lin, Synthesis, characterization and biological activity of lanthanum(III) complexes containing 2-methylene-1,10-phenanthroline units bridged by aliphatic diamines. J. Inorg. Biochem. 100, 36–43 (2006)Google Scholar