Composites of BiVO4 and g-C3N4: Synthesis, Properties and Photocatalytic Decomposition of Azo Dye AO7 and Nitrous Oxide
- 16 Downloads
Abstract
The composites of BiVO4 and g-C3N4 (BiVO4/g-C3N4) were synthesised by the calcination of a mixture of monoclinic BiVO4 and bulk g-C3N4 at 300 °C for 4 h. Both components were previously prepared by the precipitation of Bi(NO3)3 with NH4VO3 and annealing of melamine. X-ray photoelectron spectroscopy (XPS) identified the presence of C–O and C=O bonds as well as metal nitrides which confirmed the formation of a heterojunction between BiVO4 and g-C3N4. The heterojunction was also indicated by UV–Vis diffuse reflectance (DRS) and photoluminescence (PL) spectroscopy. The band gap energies were determined at 2.42–2.46 eV of BiVO4 and 2.75–2.82 eV of bulk g-C3N4. The specific surface area was 23–28 m2 g−1 of the composites and 6 m2 g−1 and 35 m2 g−1 of pure BiVO4 and g-C3N4, respectively. The photocatalytic activity of the composites was investigated by the decomposition of Acid Orange 7 (AO7) and nitrous oxide. In case of AO7, the BiVO4/g-C3N4 (1:3) composite was the most active one and the main role in the reaction was played by photoinduced holes forming hydroxyl radicals. At the decomposition of N2O, the most important species were the photoinduced electrons and the BiVO4/g-C3N4 (1:1) composite was the most active photocatalyst.
Keywords
BiVO4 G-C3N4 Composites Heterojunction PhotocatalysisNotes
Acknowledgements
This work was supported by the Czech Science Foundation (project No. 16-10527S), the EU structural funding in Operational Program Research, Development and Education, Project No. CZ.02.1.01/0.0/0.0/16_019/0000853 “Institute of Environmental Technology—Excellent research” and by VŠB-Technical University of Ostrava (Project No. SP 2019/142). The authors acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073.
Supplementary material
References
- 1.K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu, I.C. Wu, Observation of crystalline C3N4. Phys. Rev. B 49(7), 5034–5037 (1994). https://doi.org/10.1103/PhysRevB.49.5034 Google Scholar
- 2.E. Kroke, Novel group 14 nitrides. Coord. Chem. Rev. 248(5–6), 493–532 (2004). https://doi.org/10.1016/j.ccr.2004.02.001 Google Scholar
- 3.X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317 Google Scholar
- 4.P. Praus, L. Svoboda, M. Ritz, I. Troppová, M. Šihor, K. Kočí, Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 193, 438–446 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.008 Google Scholar
- 5.G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014). https://doi.org/10.1016/j.jphotochemrev.2014.04.002 Google Scholar
- 6.J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030 Google Scholar
- 7.H. Li, L. Wang, Y. Liu, J. Lei, J. Zhang, Mesoporous graphitic carbon nitride materials: synthesis and modifications. Res. Chem. Intermed. 42(5), 3979–3998 (2015). https://doi.org/10.1007/s11164-015-2294-9 Google Scholar
- 8.L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003 Google Scholar
- 9.L. Wang, C. Wang, X. Hu, H. Xue, H. Pang, Metal/graphitic carbon nitride composites: synthesis, structures, and applications. Chemistry 11(23), 3305–3328 (2016). https://doi.org/10.1002/asia.201601178 Google Scholar
- 10.W.-J. Ong (2017) 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Front. Mater. https://doi.org/10.3389/fmats.2017.00011 Google Scholar
- 11.J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503 Google Scholar
- 12.D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl. Catal. B 206, 556–588 (2017). https://doi.org/10.1016/j.apcatb.2017.01.061 Google Scholar
- 13.S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033 Google Scholar
- 14.G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B 198, 347–377 (2016). https://doi.org/10.1016/j.apcatb.2016.05.052 Google Scholar
- 15.S. Kumar, S. Karthikeyan, A. Lee, g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8(2), 74 (2018). https://doi.org/10.3390/catal8020074 Google Scholar
- 16.K. Kočí, M. Reli, I. Troppová, M. Šihor, J. Kupková, P. Kustrowski, P. Praus, Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 396, 1685–1695 (2017). https://doi.org/10.1016/j.apsusc.2016.11.242 Google Scholar
- 17.M. Reli, P. Huo, M. Sihor, N. Ambrozova, I. Troppova, L. Matejova, J. Lang, L. Svoboda, P. Kustrowski, M. Ritz, P. Praus, K. Koci, Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 120(43), 8564–8573 (2016). https://doi.org/10.1021/acs.jpca.6b07236 Google Scholar
- 18.P. Praus, L. Svoboda, R. Dvorský, M. Reli, M. Kormunda, P. Mančík, Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3 N 4. Ceram. Int. 43(16), 13581–13591 (2017). https://doi.org/10.1016/j.ceramint.2017.07.067 Google Scholar
- 19.M. Reli, L. Svoboda, M. Šihor, I. Troppová, J. Pavlovský, P. Praus, K. Kočí, Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. Res. (2017). https://doi.org/10.1007/s11356-017-0723-6 Google Scholar
- 20.P. Praus, L. Svoboda, R. Dvorský, J.L. Faria, C.G. Silva, M. Reli, Nanocomposites of SnO2 and g-C3N4: preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 44(4), 3837–3846 (2018). https://doi.org/10.1016/j.ceramint.2017.11.170 Google Scholar
- 21.J. Cheng, X. Yan, Q. Mo, B. Liu, J. Wang, X. Yang, L. Li, Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance. Ceram. Int. 43(1), 301–307 (2017). https://doi.org/10.1016/j.ceramint.2016.09.156 Google Scholar
- 22.M. Ou, Q. Zhong, S. Zhang, Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol–Gel. Sci. Technol. 72(3), 443–454 (2014). https://doi.org/10.1007/s10971-014-3454-x Google Scholar
- 23.J. Zhang, F. Ren, M. Deng, Y. Wang, Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study. Phys. Chem. Chem. Phys. 17(15), 10218–10226 (2015). https://doi.org/10.1039/c4cp06089j Google Scholar
- 24.N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 44(9), 4297–4307 (2015). https://doi.org/10.1039/c4dt03905j Google Scholar
- 25.R. Venkatesan, S. Velumani, A. Kassiba, Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phys. 135(2–3), 842–848 (2012). https://doi.org/10.1016/j.matchemphys.2012.05.068 Google Scholar
- 26.A. Zhang, J. Zhang, Hydrothermal processing for obtaining of BiVO4 nanoparticles. Mater. Lett. 63(22), 1939–1942 (2009). https://doi.org/10.1016/j.matlet.2009.06.013 Google Scholar
- 27.S. Kunduz, G.S. Pozan Soylu, Highly active BiVO4 nanoparticles: the enhanced photocatalytic properties under natural sunlight for removal of phenol from wastewater. Sep. Purif. Technol. 141, 221–228 (2015). https://doi.org/10.1016/j.seppur.2014.11.036 Google Scholar
- 28.J. Liu, H. Wang, S. Wang, H. Yan, Hydrothermal preparation of BiVO4 powders. Mater. Sci. Eng. 104(1–2), 36–39 (2003). https://doi.org/10.1016/s0921-5107(03)00264-2 Google Scholar
- 29.H. Li, G. Liu, X. Duan, Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties. Mater. Chem. Phys. 115(1), 9–13 (2009). https://doi.org/10.1016/j.matchemphys.2009.01.014 Google Scholar
- 30.W. Ma, Z. Li, W. Liu, Hydrothermal preparation of BiVO4 photocatalyst with perforated hollow morphology and its performance on methylene blue degradation. Ceram. Int. 41(3), 4340–4347 (2015). https://doi.org/10.1016/j.ceramint.2014.11.123 Google Scholar
- 31.M. Shang, W. Wang, L. Zhou, S. Sun, W. Yin, Nanosized BiVO4 with high visible-light-induced photocatalytic activity: ultrasonic-assisted synthesis and protective effect of surfactant. J. Hazard. Mater. 172(1), 338–344 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.017 Google Scholar
- 32.W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater. 173(1–3), 194–199 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.068 Google Scholar
- 33.U.M. García-Pérez, S. Sepúlveda-Guzmán, A. Martínez-de la Cruz, Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation. Solid State Sci. 14(3), 293–298 (2012). https://doi.org/10.1016/j.solidstatesciences.2011.12.008 Google Scholar
- 34.S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J. Phys. Chem. C 113(28), 11980–11983 (2009). https://doi.org/10.1021/jp903757x Google Scholar
- 35.J. Pérez-Ramírez, F. Kapteijn, K. Schöffel, J.A. Moulijn, Formation and control of N2O in nitric acid production. Appl. Catal. B 44(2), 117–151 (2003). https://doi.org/10.1016/s0926-3373(03)00026-2 Google Scholar
- 36.K. Kočí, S. Krejčíková, O. Šolcová, L. Obalová, Photocatalytic decomposition of N2O on Ag-TiO2. Catal. Today 191(1), 134–137 (2012). https://doi.org/10.1016/j.cattod.2012.01.021 Google Scholar
- 37.S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C 31, 1–35 (2017). https://doi.org/10.1016/j.jphotochemrev.2017.01.005 Google Scholar
- 38.B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem. Eng. Process. 109, 178–189 (2016). https://doi.org/10.1016/j.cep.2016.08.016 Google Scholar
- 39.L. Ming, H. Yue, L. Xu, F. Chen, Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2(45), 19145–19149 (2014). https://doi.org/10.1039/C4TA04041D Google Scholar
- 40.O. Man, Q. Zhong, J. Zhang, Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol–Gel. Sci. Technol. 72(3), 443–454 (2014). https://doi.org/10.1007/s10971-014-3454-x) Google Scholar
- 41.I. Troppová, M. Šihor, M. Reli, M. Ritz, P. Praus, K. Kočí, Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide. Appl. Surf. Sci. 430, 335–347 (2018). https://doi.org/10.1016/j.apsusc.2017.06.299 Google Scholar
- 42.J. Lang, L. Matějová, I. Troppová, L. Čapek, J. Endres, S. Daniš, Novel synthesis of ZrxTi1–xOn mixed oxides using titanyl sulphate and pressurized hot and supercritical fluids, and their photocatalytic comparison with sol-gel prepared equivalents. Mater. Res. Bull. 95, 95–103 (2017). https://doi.org/10.1016/j.materresbull.2017.07.023 Google Scholar
- 43.H. Fan, T. Jiang, H. Li, D. Wang, L. Wang, J. Zhai, D. He, P. Wang, T. Xie, Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J. Phys. Chem. C 116(3), 2425–2430 (2012). https://doi.org/10.1021/jp206798d Google Scholar
- 44.A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121(49), 11459–11467 (1999). https://doi.org/10.1021/ja992541y Google Scholar
- 45.P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2(47), 20338–20344 (2014). https://doi.org/10.1039/c4ta04100c Google Scholar
- 46.I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015). https://doi.org/10.1016/j.apsusc.2015.08.097 Google Scholar
- 47.T. Komatsu, The first synthesis and characterization of cyameluric high polymers. Macromol. Chem. Phys. 202(1), 19–25 (2001)Google Scholar
- 48.R.L. Frost, K.L. Erickson, M.L. Weier, O. Carmody, Raman and infrared spectroscopy of selected vanadates. Spectrochim Acta A Mol Biomol Spectrosc 61(5), 829–834 (2005). https://doi.org/10.1016/j.saa.2004.06.006 Google Scholar
- 49.X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater. Chem. Phys. 125(1–2), 59–65 (2011). https://doi.org/10.1016/j.matchemphys.2010.08.071 Google Scholar
- 50.J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi, H. Tang, Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80, 213–221 (2014). https://doi.org/10.1016/j.carbon.2014.08.059 Google Scholar
- 51.L. Stagi, D. Chiriu, C.M. Carbonaro, R. Corpino, P.C. Ricci, Structural and optical properties of carbon nitride polymorphs. Diam. Relat. Mater. 68, 84–92 (2016). https://doi.org/10.1016/j.diamond.2016.06.009 Google Scholar
- 52.A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41), 4893 (2008). https://doi.org/10.1039/b800274f Google Scholar
- 53.A. Glaser, S. Surnev, F.P. Netzer, N. Fateh, G.A. Fontalvo, C. Mitterer, Oxidation of vanadium nitride and titanium nitride coatings. Surf. Sci. 601(4), 1153–1159 (2007). https://doi.org/10.1016/j.susc.2006.12.010 Google Scholar
- 54.G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 135(2–3), 167–175 (2004). https://doi.org/10.1016/j.elspec.2004.03.004 Google Scholar
- 55.E.A. Abdullah, A.H. Abdullah, Z. Zainal, M.Z. Hussein, T.K. Ban (2012) Synthesis and characterisation of Penta-Bismuth hepta-oxide nitrate, Bi5O7NO3, as a new adsorbent for methyl orange removal from an aqueous solution. e-J. Chem. 9 (4). https://doi.org/10.1155/2012/707853
- 56.M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257(3), 887–898 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086 Google Scholar
- 57.L. Svoboda, P. Praus, M.J. Lima, M.J. Sampaio, D. Matýsek, M. Ritz, R. Dvorský, J.L. Faria, C.G. Silva, Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 100, 322–332 (2018). https://doi.org/10.1016/j.materresbull.2017.12.049 Google Scholar
- 58.J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15(2), 627–637 (1966). https://doi.org/10.1002/pssb.19660150224 Google Scholar
- 59.Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013). https://doi.org/10.1038/srep01943 Google Scholar
- 60.D.-K. Ma, M.-L. Guan, S.-S. Liu, Y.-Q. Zhang, C.-W. Zhang, Y.-X. He, S.-M. Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 41(18), 5581–5586 (2012). https://doi.org/10.1039/C2DT30099K Google Scholar
- 61.P.M. Wood, The potential diagram for oxygen at pH 7. Biochem. J. 253(1), 287–289 (1988). https://doi.org/10.1042/bj2530287 Google Scholar
- 62.K. Li, X. Zeng, S. Gao, L. Ma, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x/g-C3N4 heterojunctions: enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 9(7), 1969–1982 (2016). https://doi.org/10.1007/s12274-016-1088-8 Google Scholar
- 63.M. Rochkind, S. Pasternak, Y. Paz, Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20(1), 88–110 (2014). https://doi.org/10.3390/molecules20010088 Google Scholar
- 64.X. Chen, W. Wang, H. Xiao, C. Hong, F. Zhu, Y. Yao, Z. Xue, Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 193–194, 290–295 (2012). https://doi.org/10.1016/j.cej.2012.04.033 Google Scholar
- 65.N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces 4(7), 3718–3723 (2012). https://doi.org/10.1021/am300812n Google Scholar
- 66.J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, A review of direct Z-scheme photocatalysts. Small Methods 1(5), 1700080 (2017). https://doi.org/10.1002/smtd.201700080 Google Scholar
- 67.A. Kudo, H. Nagayoshi, Photocatalytic reduction of N2O on metal-supported TiO2 powder at room temperature in the presence of H2O and CH3OH vapor. Catal. Lett. 52, 109–111 (1998)Google Scholar
- 68.Z. Zhang, M. Wang, W. Cui, H. Sui, Synthesis and characterization of a core–shell BiVO4@g-C3N4 photo-catalyst with enhanced photocatalytic activity under visible light irradiation. RSC Adv. 7(14), 8167–8177 (2017). https://doi.org/10.1039/c6ra27766g Google Scholar
- 69.M. Ou, Q. Zhong, S. Zhang, L. Yu, Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J. Alloy. Compd. 626, 401–409 (2015). https://doi.org/10.1016/j.jallcom.2014.11.148 Google Scholar
- 70.J. Safaei, H. Ullah, N.A. Mohamed, M.F. Mohamad Noh, M.F. Soh, A.A. Tahir, N. Ahmad Ludin, M.A. Ibrahim, W.N.R. Wan Isahak, M.A. Mat Teridi, Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018). https://doi.org/10.1016/j.apcatb.2018.04.056 Google Scholar