Advertisement

The Nonlinear I–V Behavior of Graphene Nanoplatelets/Epoxy Resin Composites Obtained by Different Processing Methods

  • Yang Yuan
  • Zhaoming QuEmail author
  • Qingguo Wang
  • Erwei Cheng
  • Xiaoning Sun
Article
  • 81 Downloads

Abstract

With the rapid development of information technology, the conductive switching materials induced by voltage are highly desired to protect the electronic devices from surge voltage and electrostatic discharge. Polymeric composites filled with conductive or semiconductive fillers with high nonlinear I–V characteristics can be used for the overvoltage protection. In this study, the graphene nanoplatelets (GNPs) were processed by two methods (TEC1 and TEC2) and embedded in an epoxy resin (ER) to prepare composites. In the TEC1, the graphene oxide (GO) was firstly reduced for improving conductivity and modified by coupling agent later. On the contrary, the GO was modified before reduction in the TEC2, which focused on improving the compatibility and dispersivity of fillers with the matrix. The microstructure analysis and conductive characteristic measurements of the GNPs/ER composites obtained by TEC1 and TEC2 exhibited obvious nonlinear I–V behavior under certain applied voltage range with a high nonlinear coefficient. The switching threshold voltage and nonlinear coefficients could be adjusted by changing the filling concentration of the filler. Moreover, the conductive mechanism of the nonlinear I–V behavior was discussed, which verified that the GNPs/ER composites obtained by TEC2 was more suitable for the actual need of overvoltage protection because of their stable nonlinear I–V characteristics.

Keywords

Nonlinear I–V behavior Graphene nanoplatelet Polymeric composite Switching threshold voltage 

Notes

Funding

This work was financially supported by the Foundation of National Key Laboratory on Electromagnetic Environment Effects (No. 614220504030617).

References

  1. 1.
    J. Wang, S. Yu, S. Luo et al., Investigation of nonlinear I–V behavior of CNTs filled polymer composites. Mater. Sci. Eng. B 206, 55–60 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Gao, F. Liu, D. Liu et al., Electrical-field induced nonlinear conductive behavior in dense zirconia ceramic. J. Mater. Sci. Technol. 33, 897–900 (2017)CrossRefGoogle Scholar
  3. 3.
    Q. Chen, J. Gao, K. Dai et al., Nonlinear current-voltage characteristics of conductive polyethylene composites with carbon black filled pet microfibrils. Chin. J. Polym. Sci. 31(2), 211–217 (2013)CrossRefGoogle Scholar
  4. 4.
    N. Masó, H. Beltrán, M. Prades et al., Field-enhanced bulk conductivity and resistive-switching in Ca-doped BiFeO3 ceramics. Phys. Chem. Chemical Phys. 16(36), 19408–19416 (2014)CrossRefGoogle Scholar
  5. 5.
    L.U. Pin, Q.U. Zhaoming, W.A.N.G. Qingguo et al., Conductive switching behavior of epoxy resin/micron-aluminum particles composites. e-Polymers 18(1):85–89 (2018)CrossRefGoogle Scholar
  6. 6.
    R.M. Mutiso, J.M. Kikkawa, K.I. Winey, Resistive switching in silver/polystyrene/silver nano-gap devices. Appl. Phys. Lett. 103, 223302 (2013)CrossRefGoogle Scholar
  7. 7.
    K. Oh, W. Jeon, S.S. Lee, One-dimensional TiO2@Ag nanoarchitectures with interface-mediated implementation of resistance-switching behavior in polymer nanocomposites. ACS Appl. Mater. Interfaces 4, 5727–5731 (2012)CrossRefGoogle Scholar
  8. 8.
    Q. Liu, X. Yao, X. Zhou et al., Varistor effect in Ag–graphene/epoxy resin nanocomposites. Scripta Mater. 66(2), 113–116 (2012)CrossRefGoogle Scholar
  9. 9.
    B. Kiesow, J.E. Morris, C. Radehaus, A. Heilmann, Switching behavior of plasma polymer films containing silver nanoparticles. J. Appl. Phys. 94(10), 6988–6990 (2003)CrossRefGoogle Scholar
  10. 10.
    X. Wang, J.K. Nelson, L.S. Schadler, Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17, 1687–1696 (2010)CrossRefGoogle Scholar
  11. 11.
    V. Panwar, V.K. Sachdev, R.M. Mehra, Insulator conductor transition in low-density polyethylene–graphite composites. Eur. Polymer J. 43, 573–585 (2007)CrossRefGoogle Scholar
  12. 12.
    W. Lu, D.J. Wu, C.L. Wu, G.H. Chen, Nonlinear DC response in high-density polyethylene/graphite nanosheets composites. J. Mater. Sci. 41, 1785–1790 (2006)CrossRefGoogle Scholar
  13. 13.
    W. Lu, H.F. Lin, G.H. Chen, Voltage-induced resistivity relaxation in a high-density polyethylene/graphite nanosheet composite. J. Polym. Sci. Part B 45, 860–863 (2007)CrossRefGoogle Scholar
  14. 14.
    S.I. White, R.M. Mutiso, P.M. Vora et al., Electrical percolation behavior in silver nanowire–polystyrene composites: simulation and experiment. Adv. Funct. Mater. 20(16), 2709–2716 (2010)CrossRefGoogle Scholar
  15. 15.
    S.I. White, P.M. Vora, J.M. Kikkawa, K.I. Winey, Resistive switching in bulk silver nanowire-polystyrene composites. Adv. Funct. Mater. 21(2), 233–240 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Wenhu Yang, S. Wang, S. Luo, Yu, et al. ZnO-Decorated carbon nanotube hybrids as fillers leading to reversible nonlinear IV behavior of polymer composites for device protection. ACS Appl. Mater. Interfaces 8, 35545–35551 (2016)CrossRefGoogle Scholar
  17. 17.
    A.C. Ferrari, F. Bonaccorso, V. Fal’Ko et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Du, I. Skachko, A. Barker et al., Approaching ballistic transport in suspended grapheme. Nat. Nanotechnol. 3(8), 491–495 (2008)CrossRefGoogle Scholar
  19. 19.
    A.J. Marsden, D.G. Papageorgiou, C. Vallés et al., Electrical percolation in graphene–polymer composites. 2D Mater 5, 032003 (2018)CrossRefGoogle Scholar
  20. 20.
    D. Xiang, L. Wang, Y. Tang et al., Damage self-sensing behavior of carbon nanofiller reinforced polymer composites with different conductive network structures. Polymer 158, 308–319 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Xiang, L. Wang, Y. Tang et al., Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym. Int. 67(2), 227–235 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Xiang, L. Wang, Y. Tang et al., Processing-property relationships of biaxially stretched binary carbon nanofiller reinforced high density polyethylene nanocomposites. Mater. Lett. 209, 551–554 (2017)CrossRefGoogle Scholar
  23. 23.
    M.J. Roshan, A. Jeevika, A. Bhattacharyya et al., One-pot fabrication and characterization of graphene/PMMA composite flexible films. Mater. Res. Bull. 105, 133–141 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Wu, Z. Wang, X. Liu et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 9(10), 9059 (2017)CrossRefGoogle Scholar
  25. 25.
    Z. Jia, H. Li, Y. Zhao et al., Electrical and mechanical properties of poly (dopamine)-modified copper/reduced graphene oxide composites. J. Mater. Sci. 52(19), 11620–11629 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Yang, P. Liu, T. Zhang et al., Fabrication of natural rubber nanocomposites with high grapheme contents via vacuum-assited self-assembly. RSC Adv. 4(53), 27687–27690 (2014)CrossRefGoogle Scholar
  27. 27.
    N.A.M. Jani, M.A. Ibrahim, T.I.T. Kudin et al. Morphological and electrochemical properties of hybridized PPy/rGO composites. Mater. Today Proc. 4(4):5138–5145 (2017)Google Scholar
  28. 28.
    N. Park, J. Lee, H. Min et al., Preparation of highly conductive reduced graphite oxide/poly (styrene-co-butyl acrylate) composites via miniemulsion polymerization. Polymer 55(20), 5088–5094 (2014)CrossRefGoogle Scholar
  29. 29.
    S.C. Pillai, J.M. Kelly, R. Ramesh et al., Advances in the synthesis of ZnO nanomaterials for varistor devices. J. Mater. Chem. C 1, 3268 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Wang, J.K. Nelson, L.S. Schadler et al., Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17(6), 1687–1696 (2010)CrossRefGoogle Scholar
  31. 31.
    Y.C. Lai, D.Y. Wang, I. Huang et al., Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J. Mater. Chem. C 1(3), 552–559 (2012)CrossRefGoogle Scholar
  32. 32.
    H.Y. Tsao, Y.J. Lin, Resistive switching behaviors of Au/pentacene/Si-nanowire arrays/heavily doped n-type Si devices for memory applications. Appl. Phys. Lett. 104(5), 3 (2014)Google Scholar
  33. 33.
    J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963)CrossRefGoogle Scholar
  34. 34.
    Z. Wang, F. Zeng, J. Yang et al., Resistive switching induced by metallic filaments formation through poly (3, 4-ethylene-dioxythiophene):poly(styrenesulfonate). ACS Appl. Mater. Interfaces 4(1), 447–453 (2012)CrossRefGoogle Scholar
  35. 35.
    P. Sheng, Pair-cluster theory for the dielectric constant of composite media. Phys. Rev. B 22(12), 6364–6368 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yang Yuan
    • 1
  • Zhaoming Qu
    • 1
    Email author
  • Qingguo Wang
    • 1
  • Erwei Cheng
    • 1
  • Xiaoning Sun
    • 1
  1. 1.National Key Laboratory on Electromagnetic Environment EffectsArmy Engineering UniversityShijiazhuangChina

Personalised recommendations