Advertisement

Cerium Doped ZnS Nanorods for Photocatalytic Degradation of Turquoise Blue H5G Dye

  • Nachimuthu SuganthiEmail author
  • Kuppusamy Pushpanathan
Article
  • 15 Downloads

Abstract

Mesoporous ZnS: Ce nanorod have been synthesized via a co-precipitation process for photocatalytic activity, photostability and photomineralizatión properties. N2 adsorption studies confirm the presence of mesoporous in the ZnS nanoparticles and ZnS: Ce nanorods. The incorporation of Ce increases the photocatalytic efficiency of ZnS and narrowing the bandgap energy. The underlying mechanism of photocatalysis in the dye/ZnS: Ce system, the Ce4+ ions inhibits the electron–hole recombination. Photoconductivity measurements confirm the production of photocharge carrier of ZnS: Ce nanorod and the elimination of electron–hole recombination is validated by photoluminescence spectra. The improved charge separation of ZnS: Ce nanorods produce higher photodegradation than undoped ZnS nanoparticles under sunlight irradiation. An exclusive mesoporous structure of ZnS: Ce nanorod propose for enlightening the light harvest, charge separation, and the performance of photocatalytic degradation. Upon photocatalysis, the sample showed no structural changes after five cycles of Turquoise Blue H5G degradation that were characterized by Fourier transmission infrared and XRD analyses.

Keywords

Cerium dopant Nanorods Mesoporous Turquoise Blue H5G Photodegradation 

Notes

References

  1. 1.
    L. Nasi, D. Calestani, T. Besagni, P. Ferro, F. Fabbri, F. Licci, R. Mosca, J. Phys. Chem. C 116, 6920 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, P. Zhang, B. Tian, J. Zhang, ACS Appl. Mater. Interfaces 7, 13849 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Kim, S.J. Kim, S.P. Cho, B.H. Hong, D.J. Jang, Sci. Rep. 5, 12345 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Lee, Y. Kim, J.K. Kim, S. Kim, D.-H. Min, Appl. Catal. B 205, 433 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Fischereder, M.L. Martinez-Ricci, A. Wolosiuk, W. Haas, F. Hofer, G. Trimmel, G.J.A.A. Soler-Illia, Chem. Mater. 24, 1837 (2012)CrossRefGoogle Scholar
  6. 6.
    Y.Y. Lee, J.H. Moon, Y.S. Choi, G.O. Park, M. Jin, L.Y. Jin, D. Li, J.Y. Lee, S.U. Son, J.M. Kim, J. Phys. Chem. C 121, 5137 (2017)CrossRefGoogle Scholar
  7. 7.
    H.B. Motejadded Emrooz, A.R. Rahmani, Mater. Sci. Semicond. Process. 72, 15 (2017)CrossRefGoogle Scholar
  8. 8.
    R.K. Rana, L. Zhang, J.C. Yu, Y. Mastai, A. Gedanken, Langmuir 19, 5904 (2003)CrossRefGoogle Scholar
  9. 9.
    D. Van Gough, A. Wolosiuk, P.V. Braun, Nano Lett. 9, 1994 (2009)CrossRefGoogle Scholar
  10. 10.
    Z.-X. Sun, Q. Zhang, Y.-H. Lu, Y.-L. Li, Microporous Mesoporous Mater. 109, 376 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Amaranatha Reddy, D.H. Kim, S.J. Rhee, C.U. Jung, B.W. Lee, C. Liu, J. Alloys Compd 588, 596 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Sookhakian, Y.M. Amin, W.J. Basirun, Appl. Surf. Sci. 283, 668 (2013)CrossRefGoogle Scholar
  13. 13.
    B. Joshi, K. Kabariya, S. Nakrani, A. Khan, F.M. Parabia, H.V. Doshi, M.C. Thakur, Am. J. Environ. Prot. 1, 41 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Harish, M. Navaneethan, J. Archana, A. Silambarasan, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Dalton Trans. 44, 10490 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Harish, M. Sabarinathan, A. Periyanayaga Kristy, J. Archana, M. Navaneethan, H. Ikedaa, Y. Hayakawa, RSC Adv. 7, 26446 (2017)CrossRefGoogle Scholar
  16. 16.
    X. Feng, W. Zhang, H. Deng, Z. Ni, F. Dong, Y. Zhang, J. Hazard. Mater. 322, 223 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Sharma, T. Jain, S. Singh, O.P. Pandey, Sol. Energy 866, 626 (2012)CrossRefGoogle Scholar
  18. 18.
    D.W. Synnott, M.K. Seery, S.J. Hinder, G. Michlits, S.C. Pillai, Appl. Catal. B 130, 106 (2012)Google Scholar
  19. 19.
    D.-J. Zhou, X.-Y. Xie, Y. Zhang, D.-Y. Guo, Y.-J. Zhou, J.-F. Xie, Mater. Res. Express 3, 105023 (2016)CrossRefGoogle Scholar
  20. 20.
    W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, J. Jiang, J. Nanomater. (2017).  https://doi.org/10.1155/2017/9378349 Google Scholar
  21. 21.
    N. Shanmugam, S. Cholan, G. Viruthagiri, R. Gobi, N. Kannadasan, Appl. Nanosci. 4, 359 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Chen, R. Yin, Q. Wu, J. Nanomater. (2012).  https://doi.org/10.1155/2012/560310 Google Scholar
  23. 23.
    M. Azarang, A. Shuhaimi, R. Yousefi, A. Moradi Golsheikh, M. Sookhakian, Ceram. Int. 40, 10217 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Azarang, A. Shuhaimi, R. Yousefi, S.P. Jahromi, RSC Adv. (2015).  https://doi.org/10.1039/C4RA16767H Google Scholar
  25. 25.
    M. Azarang, M. Sookhakian, M. Aliahmad, M. Dorraj, W.J. Basirun, B.T. Goh, Y. Alias, Int. J. Hydrog. Energy (2018).  https://doi.org/10.1016/j.ijhydene.2018.06.082 Google Scholar
  26. 26.
    P. Sudhagar, A. Devadoss, K. Nakata, C. Terashima, A. Fujishima, J. Electrochem. Soc. 162, H108 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Shionoya, W.M. Yen, Phosphor Handbook (C.R.C. Press, L.L.C., Boca Raton, 1999), pp. 3–4, 5–6,178, 186, 231–232, 847–848Google Scholar
  28. 28.
    N. Shanmugam, S. Cholan, N. Kannadasan, K. Sathishkumar, K. Deivam, J Mater. Res. Technol. 3, 222 (2014)CrossRefGoogle Scholar
  29. 29.
    N. Kaneva, A. Bojinova, K. Papazova, D. Dimitrov, Catal. Today 252, 113 (2015)CrossRefGoogle Scholar
  30. 30.
    N. Kannadasan, N. Shanmugam, S. Cholan, K. Sathishkumar, G. Viruthagiri, R. Poonguzhali, Mater. Charact. 97, 37 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Ummartyotin, Y. Infahsaeng, Renew. Sustain. Energy Rev. 55, 17 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Selva kumaar, R. Tamiz selvi, J. Appl. Sci. 8, 2306 (2008)CrossRefGoogle Scholar
  33. 33.
    R.L. Pen, J.F. Banfield, Am. Mineral. 83, 1077 (1998)CrossRefGoogle Scholar
  34. 34.
    G.L. Hornyak, J. Dutta, H.F. Tibbals, A. Rao, Introduction to Nanoscience (CRC Press, Boca Raton, 2008)CrossRefGoogle Scholar
  35. 35.
    N.A. Kotov, Nanoparticle Assemblies and Superstructures (Taylor and Francis, Boca Raton, 2005)CrossRefGoogle Scholar
  36. 36.
    H. Xue, Y. Jiang, K. Yuan, T. Yang, J. Hou, C. Cao, K. Feng, X. Wang, Sci. Rep. 6, 29902 (2016)CrossRefGoogle Scholar
  37. 37.
    T. Ahmad, S. Khatoon, K. Coolahan, Bull. Mater. Sci. 36, 997 (2013)CrossRefGoogle Scholar
  38. 38.
    D.P. Lapham, J.L. Lapham, Int. J. Pharm. (2017).  https://doi.org/10.1016/j.ijpharm.2017.08.003 Google Scholar
  39. 39.
    L.C. Nistor, C.D. Mateescu, R. Birjega, S.V. Nistor, Appl. Phys. A 92, 295 (2008)CrossRefGoogle Scholar
  40. 40.
    X. Chen, Z. Wu, Z. Gao, B.-C. Ye, Nanomaterials 7, 258 (2017)CrossRefGoogle Scholar
  41. 41.
    G.R. Li, X.H. Lu, W.X. Zhao, C.Y. Su, Y.X. Tong, Cryst. Growth Des. 8, 1276 (2008)CrossRefGoogle Scholar
  42. 42.
    N. Prasad, V.M.M. Saipavitra, H. Swaminathan, P. Thangaraj, M.R. Viswanathan, K. Balasubramanian, Appl. Phys. A. 122, 590 (2016)CrossRefGoogle Scholar
  43. 43.
    U.P. Gawai, U.P. Deshpande, B.N. Dole, RSC Adv. 7, 12382 (2017)CrossRefGoogle Scholar
  44. 44.
    C.-J. Chang, K.-L. Huang, J.-K. Chen, K.-W. Chu, M.-H. Hsu, J. Taiwan Inst. Chem. Eng. 55, 82 (2015)CrossRefGoogle Scholar
  45. 45.
    N. Pal, I. Mukherjee, S. Chatterjee, E.-B. Cho, Dalton Trans. 46, 9577 (2017)CrossRefGoogle Scholar
  46. 46.
    I. Deckman, M. Moshonov, S. Obuchovsky, R. Brenerb, G.L. Frey, J. Mater. Chem. A 2, 16746 (2014)CrossRefGoogle Scholar
  47. 47.
    Y. Jiang, Z. Jin, C. Chen, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, RSC Adv. 7, 12856 (2017)CrossRefGoogle Scholar
  48. 48.
    W.M. Yen, M. Raukasa, S.A. Basunb, W. Schaik, U. Happek, J. Lumin. 69, 287 (1996)CrossRefGoogle Scholar
  49. 49.
    K. Goharshadi Elaheh, S. Samiee, P. Nancarrow, J. Colloid Interface Sci. 356, 473 (2011)CrossRefGoogle Scholar
  50. 50.
    K.S. Ranjith, T. Uyar, J. Mater. Chem. A 5, 14206 (2017)CrossRefGoogle Scholar
  51. 51.
    N. Karar, H. Chander, J. Phys. D 38, 3580 (2005)CrossRefGoogle Scholar
  52. 52.
    B. Masenelli, G. Ledoux, D. Amans, C. Dujardin, P. Melinon, Nanotechnology. 23, 305706 (2012)CrossRefGoogle Scholar
  53. 53.
    X. Li, F. Li, Y. Xie, Trends in Water Pollution Research (Nova Science Publishers, 2005), pp. 31–74. ISBN 1-59454-328-3Google Scholar
  54. 54.
    M.E. Khan, M.M. Khan, M.H. Cho, Sci. Rep. 7, 5928 (2017)CrossRefGoogle Scholar
  55. 55.
    Y.-C. Yen, J.-A. Chen, S. Ou, Y.-S. Chen, K.-J. Lin, Sci. Rep. 7, 42524 (2017)CrossRefGoogle Scholar
  56. 56.
    T. Kimura, Y. Yamauchi, N. Miyamoto, Chem. Eur. J. 16, 12069 (2010)CrossRefGoogle Scholar
  57. 57.
    L. Clarizia, D. Russo, I. Di Somma, R. Andreozzi, R. Marotta, Energies 10, 1624 (2017)CrossRefGoogle Scholar
  58. 58.
    X. Zhou, L. Li, Z. Li, L. Fan, W. Kang, B. Cheng, J. Mater. Sci. Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-7082-4 Google Scholar
  59. 59.
    K. Ramesh, A. Rajappa, V. Nandhakumar, Z. Phys. Chem. 231, 1057 (2017)CrossRefGoogle Scholar
  60. 60.
    X. Li, X. Zou, Z. Qu, Q. Zhao, L. Wang, Chemosphere 83, 674 (2011)CrossRefGoogle Scholar
  61. 61.
    Z. Zhang, D. Shi, H. Ding, H. Zheng, H. Chen, Int. J. Environ. Sci. Technol. (2015).  https://doi.org/10.1007/s13762-015-0762-9 Google Scholar
  62. 62.
    A. Naranjo, G. Zambrano, W. Torres, M.E. Gomez, J. Phys. Conf. Ser. 480, 012026 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanomaterials Research Laboratory, Department of PhysicsGovernment Arts CollegeKarurIndia

Personalised recommendations