Advertisement

Nd3+ Ion-Substituted Co1−2xNixMnxFe2−yNdyO4 Nanoparticles: Structural, Morphological, and Magnetic Investigations

  • M. A. AlmessiereEmail author
  • Y. Slimani
  • S. Ali
  • A. Baykal
  • I. Ercan
  • H. Sozeri
Article
  • 84 Downloads

Abstract

Co1−2xNixMnxFe2−yNdyO4 (0.0 ≤ x = y ≤ 0.3) nanoparticles (NPs) were synthesized by the citrate sol–gel route. All the products were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and a vibrating-sample magnetometer (VSM). The cubic structure of all the samples was confirmed by phase identification of XRD patterns, using Rietveld refinement. VSM analysis confirmed the soft ferromagnetic behavior of the synthesized products. The saturation (Ms) and remanent (Mr) magnetizations decreased with an increase in the amount of substitution elements. Compared with that of pure CoFe2O4 NPs, the coercive field (Hc) increased up to 890 Oe at x = y = 0.03. The squareness ratio was found to be in the 0.55–0.46 interval, indicating that the various synthesized NPs exhibit a single domain and uniaxial anisotropy. The effective magnetocrystalline anisotropy constant (Keff), magneton number \(({n_B})\), and anisotropy field (Ha) were also determined, and are discussed.

Keywords

Cobalt ferrite Rare earths Phase identification Structure Microstructure Magnetic properties 

Notes

References

  1. 1.
    Q.A. Pankhrust, S.K. Connolly, J. Jones Doobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 1–67 (2003)CrossRefGoogle Scholar
  2. 2.
    Q. Chen, Z.J. Zhang, Size-dependent super paramagnetic properties of spinel ferrite nanocrystallites. Appl. Phys. Lett. 73, 3156 (1998)CrossRefGoogle Scholar
  3. 3.
    E. Ranjith Kumar, R. Jayaprakash, R. Patel, Structural and morphological studies of manganese substituted CoFe2O4 and NiFe2O4 nanoparticles. Superlattices Microstruct. 62, 277–284 (2013)CrossRefGoogle Scholar
  4. 4.
    E. RanjithKumar, A.S. Kamzin, K. Janani, Effect of annealing on particle size, microstructure and gas sensing properties of Mn substituted CoFe2O4 nanoparticles. ‎J. Magn. Magn. Mater. 417, 122–129 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, S. Feng, Magnetic properties of resubstituted Ni–Mn ferrite nanocrystallites. J. Mater. Sci. 42, 686–691 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Junaid, M.A. Khan, F. Iqbal, G. Murtaza, M.N. Akhtar, M. Ahmad, I. Shakir, M.F. Warsi, Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li-Ni nano-ferrites synthesized via micro-emulsion route. J. Magn. Magn. Mater. 419, 338–344 (2016)CrossRefGoogle Scholar
  7. 7.
    M.S. Shaha, K. Ali, I. Ali, A. Mahmood, S.M. Ramay, M.T. Farid, Structural and magnetic properties of praseodymium substituted barium based spinel ferrites. Mater. Res. Bull. 98, 77–82 (2018)CrossRefGoogle Scholar
  8. 8.
    G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlu, M. Feder, O.F. Caltun, Effect of rare earth substitution in cobalt ferrite bulk materials. J. Magn. Magn. Mater. 390, 123–131 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Zhou, Y.-W. Zhang, C.-S. Liao, C.-H. Yan, L.-Y. Chen, S.-Y. Wang, Rare-earth-mediated magnetism and magneto-optical Kerr effects in nanocrystalline CoFeMn0.9RE0.1O4 thin films. J. Magn. Magn. Mater. 280, 327 (2004)CrossRefGoogle Scholar
  10. 10.
    N. Kasapoğlu, A. Baykal, Y. Köseoğlu, M.S. Toprak, Microwave-assisted combustion synthesis of CoFe2O4 with urea and its magnetic characterization. Scripta Mater. 57, 441–444 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Manikandan, R. Sridhar, S. Arul Antony, S. Ramakrishna, A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical and catalytic properties of magnetic CoFe2O4 nanostructures. ‎J. Mol. Struct. 1076, 188–200 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Xavier, S. Thankachan, B.P. Jacob, E.M. Mohammed, Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite, J. Nanosci. (2013).  https://doi.org/10.1155/2013/524380 CrossRefGoogle Scholar
  13. 13.
    M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J. Magn. Magn. Mater. 460, 268–277 (2018)CrossRefGoogle Scholar
  14. 14.
    S.I. Ahmad, S.A. Ansari, D. Ravi Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. ‎Mater. Chem. Phys. 208, 248–257 (2018)Google Scholar
  15. 15.
    S. Singhal, J. Singh, S.K. Barthwal, K. Chandra, Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1–xNixFe2O4). J. Solid State Chem. 178, 3183–3189 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Joshi, M. Kumar, Effect of Ni2+ substitution on structural, magnetic, dielectric and optical properties of mixed spinel CoFe2O4 nanoparticles. Ceram. Int. 42, 18154–18165 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Tang, X. Wang, Q. Zhang, Y. Li, H. Wang, Solvothermal synthesis of Co1–xNixFe2O4 nanoparticles and its application in ammonia vapors detection. Prog. Nat. Sci.: Mater. Int. 22, 53–58 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Kumar, P. Sharma, D. Varshney, Structural, vibrational and dielectric study of Ni doped spinel Co ferrites: Co1–xNixFe2O4 (x = 0.0, 0.5, 1). Ceram. Int. 40(0), 12855–12860 (2014)CrossRefGoogle Scholar
  19. 19.
    A.B. Salunkhe, V.M. Khot, M.R. Phadatare, N.D. Thorat, R.S. Joshi, H.M. Yadav, S.H. Pawar, Low temperature combustion synthesis and magnetostructural properties of Co–Mn nanoferrites. J. Magn. Magn. Mater. 352, 91–98 (2014)CrossRefGoogle Scholar
  20. 20.
    S.P. Yadav, S.S. Shinde, P. Bhatt, S.S. Meena, K.Y. Rajpure, Distribution of cations in Co1–xMnxFe2O4 using XRD, magnetization and Mössbauer spectroscopy. J. Alloys Compd. 646, 550–556 (2015)CrossRefGoogle Scholar
  21. 21.
    S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, Structural, morphological, dielectrical, magnetic and impedance properties of Co1–xMnxFe2O4. J. Alloys Compd. 555, 330–334 (2013)CrossRefGoogle Scholar
  22. 22.
    R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60, 1–6 (2006)CrossRefGoogle Scholar
  24. 24.
    L. Ben Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.-J. Vaulay, V. Richard, J.-M. Grenèche, F. Villain, F. Fiévet, Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE = La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J. Magn. Magn. Mater. 320, 3242–3250 (2008)CrossRefGoogle Scholar
  25. 25.
    S.R. Bhongale, H.R. Ingawale, T.J. Shinde, P.N. Vasambekar, Effect of Nd3+ substitution on structural and magnetic properties of Mg–Cd ferrites synthesized by microwave sintering technique. J. Rare Earths 36, 390–397 (2018)CrossRefGoogle Scholar
  26. 26.
    W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Physica B 534, 17–21 (2018)CrossRefGoogle Scholar
  27. 27.
    M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, S.A. Khan, The role of praseodymium substituted ions on electrical and magnetic properties of Mg spinel ferrites. J. Magn. Magn. Mater. 428, 136–143 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Tsvetkov, M. Milanova, I. Ivanova, D. Neov, Z. Cherkezova-Zheleva, J. Zaharieva, M. Abrashev, Phase composition and crystal structure determination of cobalt ferrite, modified with Ce, Nd and Dy ions by X-ray and neutron diffraction. J. Mol. Struct. (2018).  https://doi.org/10.1016/j.molstruc.2018.07.083 CrossRefGoogle Scholar
  29. 29.
    R. Kumar, M. Kar, Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite. Ceram. Int. 42, 6640–6647 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Silambarasu, A. Manikandan, K. Balakrishnan, S.K. Jaganathan, E. Manikandan, J. Sundeep Aanand, Comparative study of structural, morphological, magneto-optical and photo-catalytic properties of magnetically reusable spinel MnFe2O4 nano-catalysts. J. Nanosci. Nanotechnol. 18, 3523–3531 (2018)CrossRefGoogle Scholar
  31. 31.
    M.M.N. Ansari, S. Khan, N. Ahmad, Effect of R3+ (R = Pr, Nd, Eu and Gd) substitution on the structural, electrical, magnetic and optical properties of Mn-ferrite nanoparticles. J. Magn. Magn. Mater. 465, 81–87 (2018)CrossRefGoogle Scholar
  32. 32.
    E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Am 240(826), 599–642 (1948)CrossRefGoogle Scholar
  33. 33.
    M.A. Almessiere, Y. Slimani, A. Baykal, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. J. Alloys Compd. 762, 389–397 (2018)CrossRefGoogle Scholar
  34. 34.
    Y. Slimani, H. Güngüneş, M. Nawaz, A. Manikandan, H.S. El Sayed, M.A. Almessiere, H. Sözeri, S.E. Shirsath, I. Ercan, A. Baykal, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)CrossRefGoogle Scholar
  35. 35.
    S.S. More, R.H. Kadam, A.B. Kadam, D.R. Mane, G.K. Bichile, Structural properties and magnetic interactions in Al3+ and Cr3+ co-substituted CoFe2O4 ferrite. Cent. Eur. J. Chem. 8, 419–425 (2010)Google Scholar
  36. 36.
    Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 321, 1251 (2009)CrossRefGoogle Scholar
  37. 37.
    M.M. Rashad, R.M. Mohamed, H. El-Shall, Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method. J. Mater. Process. Technol. 198, 139–146 (2008)CrossRefGoogle Scholar
  38. 38.
    P.P. Hankare, U.B. Sankpal, R.P. Patil, I.S. Mulla, P.D. Lokhande, N.S. Gajbhiye, Synthesis and characterization of CoCrxFe2–xO4 nanoparticles. J. Alloys Compd. 485, 798–801 (2009)CrossRefGoogle Scholar
  39. 39.
    M. Amir, H. Gungunes, Y. Slimani, N. Tashkandi, H.S. El Sayed, F. Aldakheel, M. Sertkol, H. Sozeri, A. Manikandan, I. Ercan, A. Baykal, Mossbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4733-5 CrossRefGoogle Scholar
  40. 40.
    J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)CrossRefGoogle Scholar
  41. 41.
    S. Jauhar, S. Singhal, Substituted cobalt nano-ferrites, CoMxFe2–xO4 (M = Cr3+, Ni2+, Cu2+, Zn2+; 0.2 ≤ x ≤ 1.0) as heterogeneous catalysts for modified Fenton׳s reaction. Ceram. Int. 40, 11845–11855 (2014)CrossRefGoogle Scholar
  42. 42.
    Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, Cation distribution correlated with magnetic properties of cobalt ferrite nanoparticles defective by vanadium doping. J. Magn. Magn. Mater. 441, 409–416 (2017)CrossRefGoogle Scholar
  43. 43.
    M.A. Almessiere, Y. Slimani, A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram. Int. 44, 9000–9008 (2018)CrossRefGoogle Scholar
  44. 44.
    M.A. Almessiere, Y. Slimani, H.S. El Sayed, A. Baykal, Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. Ceram. Int. 44, 12511–12519 (2018)CrossRefGoogle Scholar
  45. 45.
    Y. Slimani, A. Baykal, M. Amir, N. Tashkandi, H. Güngüneş, S. Guner, H.S. El Sayed, F. Aldakheel, T.A. Saleh, A. Manikandan, Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. Ceram. Int. 44, 15995–16004 (2018)CrossRefGoogle Scholar
  46. 46.
    A.D. Korkmaz, S. Güner, Y. Slimani, H. Gungunes, M. Amir, A. Manikandan, A. Baykal, Microstructural, optical and magnetic properties of vanadium substituted nickel spinel nano-ferrites. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4793-6 CrossRefGoogle Scholar
  47. 47.
    M.A. Almessiere, Y. Slimani, A. Baykal, Structural, morphological and magnetic properties of hard/soft SrFe12–xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: effect of vanadium substitution. J. Alloys Compd. 767, 966–975 (2018)CrossRefGoogle Scholar
  48. 48.
    S.E. Shirsath, B.G. Toshka, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids 71, 1669–1675 (2010)CrossRefGoogle Scholar
  49. 49.
    M.H. Shams, A.S. Rozatian, M.H. Yousefi, J. Valícek, V. Sepelak, Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite. J. Magn. Magn. Mater 399, 10–18 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Department of Biophysics, Institute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  3. 3.Mechanical and Energy Engineering Department, College of EngineeringImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  4. 4.Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  5. 5.TÜBITAK-UME, National Metrology InstituteGebzeTurkey

Personalised recommendations