Advertisement

Removal of RhB From Aqueous Solutions by Two Polyoxometalates Adsorbents

  • Shunqiang Chen
  • Yutong Di
  • Yong Li
  • Feng Li
  • Taohai LiEmail author
  • Wei Cao
Communication
  • 30 Downloads

Abstract

[Ru(2,2′-bipy)3]3(PW12O40)2 and [Ru(2,2′-bipy)3]2(SiW12O40) were synthesized via chemical co-precipitation method using [Ru (2,2′-bipy) 3]Cl2 and polyoxometalates as reactants. The adsorption ability of absorbents was studied by removing RhB from aqueous solutions in different conditions such absorbent dose, initial dye and contact time. The RPW owns better adsorption ability than the RSI, with a high adsorbing rate of 99% for the RhB under the optimized conditions (10 mg/L, 100 mg, 30 min).

Keywords

Functional Adsorbent Polyoxometalates Chemical coprecipitation method Porous materials 

Notes

Acknowledgements

The authors acknowledge with thanks the financial support of the National Natural Science Foundation of China (Grant No. 21601149) and Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 16B253), the Open Project Program of State Key Laboratory of Structural Chemistry, China (Grant No. No. 20150018) and Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization. W. Cao acknowledge financial support from EU Region Development Foundation, and the Council of Oulu Region.

References

  1. 1.
    I.M. Banat, P. Nigam, D. Singh, R. Marchant, Bioresour. Technol. 58, 217–227 (1996)CrossRefGoogle Scholar
  2. 2.
    M.D.L. Cruz, S.O. Alfaro, Solid State Sci. 11, 829–835 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Pokhrel, T. Viraraghavan, Sci. Total Environ. 33, 37–58 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Wang, Y. Boyjoo, A. Choueib, Chemosphere 60, 1401–1407 (2005)CrossRefGoogle Scholar
  5. 5.
    R. Gong, M. Li, C. Yang, Y. Sun, J. Chen, J. Hazard. Mater. 121, 247–250 (2005)CrossRefGoogle Scholar
  6. 6.
    C. Yang, F. Li, M. Zhang, T. Li, W. Cao, J. Mol. Catal. A 423, 1–11 (2016)CrossRefGoogle Scholar
  7. 7.
    F. Li, C.Y. Yang, Q.G. Li, W. Cao, T.H. Li, Mater. Lett. 145, 52–55 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 6, 7021–7029 (2016)CrossRefGoogle Scholar
  9. 9.
    K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Exp. 1, 015012 (2014)CrossRefGoogle Scholar
  10. 10.
    A.M. Showkat, Y.P. Zhang, M.S. Kim, A.I. Gopalan, K.R. Reddy, K. Lee, Bull. Korean Chem. Soc. 28, 1985–1992 (2007)CrossRefGoogle Scholar
  11. 11.
    K.R. Reddy, K.V. Karthik, S.B.B. Prasad, et al., Polyhedron 120, 169–174 (2016)CrossRefGoogle Scholar
  12. 12.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1–16 (2015)CrossRefGoogle Scholar
  13. 13.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3692–3695 (2011)CrossRefGoogle Scholar
  14. 14.
    A.J. Romero-Anaya, M.A. Lillo-Ródenas, Carbon 48, 2625–2633 (2010)CrossRefGoogle Scholar
  15. 15.
    K. Hamada, T. Kaneko, M.Q. Chen, M. Akashi, Chem. Mater. 19, 1044–1052 (2007)CrossRefGoogle Scholar
  16. 16.
    H. Wu, W. Zhou, T. Ylidirim, J. Am. Chem. Soc. 129, 5314–5315 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Krawiec, M. Kramer, M. Sabo, R. Kunschke, H. Fröde, S. Kaskel, Adv. Eng. Mater. 8, 293–296 (2006)CrossRefGoogle Scholar
  18. 18.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. Yaghi, Science 319, 939–943 (2008)CrossRefGoogle Scholar
  19. 19.
    N.W. Ockwig, O. Delgado-Friedrichs, M. O’Keefe, O.M. Yaghi, Acc. Chem. Res. 38, 176–182 (2005)CrossRefGoogle Scholar
  20. 20.
    R. Noguchi, A. Hara, A. Sugie, K. Nomiya, Inorg. Chem. Commun. 9, 355–359 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Nomiya, T. Yoshida, Y. Sakai, A. Nanba, S. Tsuruta, Inorg. Chem. 49, 8247–8254 (2010)CrossRefGoogle Scholar
  22. 22.
    Y.F. Song, H. Abbas, C. Ritchie, N. McMillian, D.L. Long, N. Gadegaard, L. Cronin, J. Mater. Chem. 17, 903–908 (2007)Google Scholar
  23. 23.
    Q.G. Zhai, X.Y. Wu, S.M. Chen, Z.G. Zhao, C.Z. Lu, Inorg. Chem. 46, 5046–5058 (2007)CrossRefGoogle Scholar
  24. 24.
    X.L. Wang, C. Xu, H.Y. Lin, G.C. Liu, S. Yang, Q. Gao, A.X. Tian, CrystEngComm. 14, 5836 (2012)CrossRefGoogle Scholar
  25. 25.
    X.L. Wang, D. Zhao, A.X. Tian, J. Ying, CrystEngComm 15, 4516 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Bhaduri, N.Y. Sapre, J. Chem. Soc. Dalton. Trans. 12, 2585 (1981)CrossRefGoogle Scholar
  27. 27.
    A.X. Yan, S. Yao, Y.G. Li, Z.M. Zhang, Y. Lu, W.L. Chen, E.B. Wang, Chem. Eur. J. 20, 6927–6933 (2014)CrossRefGoogle Scholar
  28. 28.
    C.R. Clarkson, R.M. Bustin, J.H. Levy, Carbon 35, 1689–1705 (1997)CrossRefGoogle Scholar
  29. 29.
    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G.S. Guo, Energy Environ. Sci. 7, 2831–2867 (2014)CrossRefGoogle Scholar
  30. 30.
    C. Raji, T.S. Anirudhan, Ind. J. Chem. Technol. 4, 157–162 (1997)Google Scholar
  31. 31.
    S.D. Khattri, M.K. Singh, Adsorpt. Sci. Technol. 17, 269–282 (1999)CrossRefGoogle Scholar
  32. 32.
    S.D. Khattri, M.K. Singh, J. Hazard. Mater. 167, 1089–1094 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Ghaedi, A. Hassanzadeh, K.S. Nasiri, J. Chem. Eng. Data 56, 2511–2520 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Arami, N.Y. Limaee, N.M. Mahmoodi, N.S. Tabrizi, J. Colloid Interface Sci. 288, 371–376 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shunqiang Chen
    • 1
  • Yutong Di
    • 1
  • Yong Li
    • 1
  • Feng Li
    • 1
  • Taohai Li
    • 1
    Email author
  • Wei Cao
    • 2
  1. 1.College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of EducationXiangtan UniversityXiangtanChina
  2. 2.Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland

Personalised recommendations