Thermally Oxidized Nanodiamond: An Effective Sorbent for Separation of Methotrexate from Aqueous Media: Synthesis, Characterization, In Vivo and In Vitro Biocompatibility Study

  • Mostafa Zamani
  • Mozhgan Aghajanzadeh
  • Hossein Molavi
  • Hossein DanafarEmail author
  • Akbar ShojaeiEmail author


In the present study the effect of nanodiamond (ND) on the adsorption capacity of Drug has been investigated. Thermal oxidation nanodiamond (OND) was used as adsorbents for Methotrexate adsorption. The surface properties of NDs were studied by Fourier transform infrared spectroscopy and zeta potential. It was determined that thermal oxidation changed the surface properties of ND, including increase the amount of carboxylic acid groups and decreasing the zeta potential of ND by increasing the thermal oxidation time. The adsorption experiments showed that untreated ND (UND) has large adsorption capacity and fast adsorption kinetic for methotrexate (MTX). These results suggest that the adsorption behavior of UND with the MTX follows not only the charge but also the chemical interaction. Due to form the strong hydrogen bond between the carboxyl groups of MTX and the oxygen containing groups on the surface of NDs, Kinetic studies showed that the kinetic data are well fitted with the pseudo- second-order model for most of the adsorbents. MTT assay, Hemolysis assay and acute toxicity were used for determining biocompatibility of the adsorbents; MTT assay showed no significant toxicity up to near 300 µg/mL, OND showed neglectable hemolysis and acute toxicity result demonstrated OND was nontoxic.


Nanodiamond Drug adsorption Biocompatibility Methotrexate 



This study was supported financially by Zanjan University of medical science (Grant No. A-12-430-33), and Sharif University of Technology, Iran.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10904_2018_1043_MOESM1_ESM.doc (39 kb)
Supplementary material 1 (DOC 39 KB)


  1. 1.
    V. Forster, J.-C. Leroux, Nano-antidotes for drug overdose and poisoning. Sci. Transl. Med. 7(290), 290ps14–290psps14 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Hedegaard, M. Warner, A.M. Miniño, Drug overdose deaths in the United States, 1999–2015: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics (2017)Google Scholar
  3. 3.
    R.C. Dart, L.R. Goldfrank, B.L. Erstad, D.T. Huang, K.H. Todd, J. Weitz et al., Expert consensus guidelines for stocking of antidotes in hospitals that provide emergency care. Ann. Emerg. Med. 54(3), 386–394 (2017)Google Scholar
  4. 4.
    S. Glund, V. Moschetti, S. Norris, J. Stangier, M. Schmohl, J. van Ryn et al., A randomised study in healthy volunteers to investigate the safety, tolerability and pharmacokinetics of idarucizumab, a specific antidote to dabigatran. Thromb. Haemost. 114(05), 943–951 (2015)Google Scholar
  5. 5.
    V. Paget, J. Sergent, R. Grall, S. Altmeyer-Morel, H. Girard, T. Petit et al., Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology 8(sup1), 46–56 (2014)CrossRefGoogle Scholar
  6. 6.
    V. Vaijayanthimala, Y.-K. Tzeng, H.-C. Chang, C.-L. Li, The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20(42), 425103 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Coleman, M. Nankoo, Acute kidney injury secondary to the use of methotrexate. J. Kidney Care 2(2), 76–81 (2017)CrossRefGoogle Scholar
  8. 8.
    A.B. Dhanikula, D. Lamontagne, J.-C. Leroux, Rescue of amitriptyline-intoxicated hearts with nanosized vesicles. Cardiovasc. Res. 74(3), 480–486 (2007)CrossRefGoogle Scholar
  9. 9.
    M.R. Fettiplace, K. Lis, R. Ripper, K. Kowal, A. Pichurko, D. Vitello et al., Multi-modal contributions to detoxification of acute pharmacotoxicity by a triglyceride micro-emulsion. J. Controll. Release 198, 62–70 (2015)CrossRefGoogle Scholar
  10. 10.
    R.A. Shenoi, M.T. Kalathottukaren, R.J. Travers, B.F. Lai, A.L. Creagh, D. Lange et al., Affinity-based design of a synthetic universal reversal agent for heparin anticoagulants. Sci. Transl. Med. 6(260), 260ra150–260ra150 (2014)CrossRefGoogle Scholar
  11. 11.
    C.-M.J. Hu, R.H. Fang, J. Copp, B.T. Luk, L. Zhang, A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8(5), 336 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Aniskevich, B.J. Leone, S.J. Brull, Sugammadex: a novel approach to reversal of neuromuscular blockade. Expert Rev. Neurother. 11(2), 185–198 (2011)CrossRefGoogle Scholar
  13. 13.
    D.G. Ilyushin, I.V. Smirnov, A.A. Belogurov, I.A. Dyachenko, T.I. Zharmukhamedova, T.I. Novozhilova et al., Chemical polysialylation of human recombinant butyrylcholinesterase delivers a long-acting bioscavenger for nerve agents in vivo. Proc. Natl. Acad. Sci. 110(4):1243–1248 (2013)CrossRefGoogle Scholar
  14. 14.
    C.P. Rusconi, J.D. Roberts, G.A. Pitoc, S.M. Nimjee, R.R. White, G. Quick Jr. et al., Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol. 22(11), 1423 (2004)CrossRefGoogle Scholar
  15. 15.
    R.J. Flanagan, A.L. Jones, Fab antibody fragments. Drug Saf. 27(14), 1115–1133 (2004)CrossRefGoogle Scholar
  16. 16.
    H. Molavi, A. Hakimian, A. Shojaei, M. Raeiszadeh, Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media. Appl. Surf. Sci. 445, 424–436 (2018)CrossRefGoogle Scholar
  17. 17.
    R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem. Eng. J. 211, 310–317 (2012)CrossRefGoogle Scholar
  18. 18.
    V.N. Mochalin, A. Pentecost, X.-M. Li, I. Neitzel, M. Nelson, C. Wei et al., Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol. Pharm. 10(10), 3728–3735 (2013)CrossRefGoogle Scholar
  19. 19.
    K.-K. Liu, C.-C. Wang, C.-L. Cheng, J.-I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30(26), 4249–4259 (2009)CrossRefGoogle Scholar
  20. 20.
    F. Hajiali, A. Shojaei, Silane functionalization of nanodiamond for polymer nanocomposites-effect of degree of silanization. Colloids Surf. A 506, 254–263 (2016)CrossRefGoogle Scholar
  21. 21.
    Z. Delavar, A. Shojaei, Enhanced mechanical properties of chitosan/nanodiamond composites by improving interphase using thermal oxidation of nanodiamond. Carbohydr. Polym. 167, 219–228 (2017)CrossRefGoogle Scholar
  22. 22.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Nunes-Pereira, A. Silva, C. Ribeiro, S. Carabineiro, J. Buijnsters, S. Lanceros-Méndez, Nanodiamonds/poly (vinylidene fluoride) composites for tissue engineering applications. Compos. B 111, 37–44 (2017)CrossRefGoogle Scholar
  24. 24.
    A. Zhukov, F. Gareeva, A. Aleksenskii, A.Y. Vul, Surface charge of detonation nanodiamond particles in aqueous solutions of simple 1: 1 Electrolytes. Colloid J. 72(5), 640–646 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 22(5), 890–906 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Karami, A. Shojaei, Morphological and mechanical properties of polyamide 6/nanodiamond composites prepared by melt mixing: effect of surface functionality of nanodiamond. Polym. Int. 66(4), 557–565 (2017)CrossRefGoogle Scholar
  27. 27.
    F. Hajiali, A. Shojaei, Network structure and mechanical properties of polydimethylsiloxane filled with nanodiamond—effect of degree of silanization of nanodiamond. Compos. Sci. Technol. 142, 227–234 (2017)CrossRefGoogle Scholar
  28. 28.
    F. Liao, X. Zeng, H. Li, X. Lai, F. Zhao, Synthesis and properties of UV curable polyurethane acrylates based on two different hydroxyethyl acrylates. J. Central South Univ. 19(4), 911–917 (2012)CrossRefGoogle Scholar
  29. 29.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Ho, C.-H.K. Wang, E.K.-H. Chow, Nanodiamonds, The intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 1(7), e1500439 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Zamani, K. Rostamizadeh, H.K. Manjili, H. Danafar, In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery. Eur. Polym. J. 103, 260–270 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Zamani, E. Naderi, M. Aghajanzadeh, M. Naseri, A. Sharafi, H. Danafar, Co1—XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: synthesis, characterization and in vivo and in vitro biocompatibility study. J. Mol. Liquids 274, 60–67 (2018)Google Scholar
  33. 33.
    O.O. Guideline, 425: acute oral toxicity—up-and-down procedure. OECD Guidel Test. Chem. 2, 6–12 (2001)Google Scholar
  34. 34.
    H. Molavi, F.A. Joukani, A. Shojaei, Ethylenediamine grafting to functionalized NH2–UiO-66 using green aza-michael addition reaction to improve CO2/CH4 adsorption selectivity. Ind. Eng. Chem. Res. 57(20), 7030–7039 (2018)CrossRefGoogle Scholar
  35. 35.
    H. Molavi, A. Shojaei, S.A. Mousavi, Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2–UiO-66. J. Mater. Chem. A 6(6), 2775–2791 (2018)CrossRefGoogle Scholar
  36. 36.
    H. Molavi, A. Shojaei, A. Pourghaderi, Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond. J. Colloid Interface Sci. 524, 52–64 (2018)CrossRefGoogle Scholar
  37. 37.
    R.A. Hashad, R.A. Ishak, A.S. Geneidi, S. Mansour, Surface functionalization of methotrexate-loaded chitosan nanoparticles with hyaluronic acid/human serum albumin: comparative characterization and in vitro cytotoxicity. Int. J. Pharm. 522(1–2), 128–136 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Baidakova, New prospects and frontiers of nanodiamond clusters. J. Phys. D 40(20), 6300 (2007)CrossRefGoogle Scholar
  39. 39.
    A. Aleksenskii, M. Baidakova, A.Y. Vul, V. Siklitskii, The structure of diamond nanoclusters. Phys. Solid State 41(4), 668–671 (1999)CrossRefGoogle Scholar
  40. 40.
    E.A. Feijani, A. Tavassoli, H. Mahdavi, H. Molavi, Effective gas separation through graphene oxide containing mixed matrix membranes. J. Appl. Polym. Sci. 135(21), 46271 (2018)CrossRefGoogle Scholar
  41. 41.
    M. Shalaginov, G. Naik, S. Ishii, M. Slipchenko, A. Boltasseva, J.-X. Cheng et al., Characterization of nanodiamonds for metamaterial applications. Appl. Phys. B 105(2), 191 (2011)CrossRefGoogle Scholar
  42. 42.
    D. Haydon, The surface charge of cells and some other small particles as indicated by electrophoresis: I. The zeta potential-surface charge relationships. Biochem. Biophys. Acta 50(3), 450–457 (1961)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Student Research CenterZanjan University of Medical SciencesZanjanIran
  2. 2.Department of Pharmaceutical Biomaterials, School of PharmacyZanjan University of Medical SciencesZanjanIran
  3. 3.Institute for Nanoscience and Nanotechnology (INST)Sharif University of TechnologyTehranIran
  4. 4.Zanjan Pharmaceutical Nanotechnology Research CenterZanjan University of Medical SciencesZanjanIran
  5. 5.Department of Medicinal Chemistry, School of PharmacyZanjan University of Medical SciencesZanjanIran
  6. 6.Cancer Gene Therapy Research CenterZanjan University of Medical SciencesZanjanIran
  7. 7.Department of Chemical and Petroleum EngineeringSharif University of TechnologyTehranIran

Personalised recommendations