Advertisement

Transition Metal Complexes with Polydentate Ligand: Synthesis, Characterization, 3D Molecular Modelling, Anticancer, Antioxidant and Antibacterial Evaluation

  • Hanaa A. El-BoraeyEmail author
  • Mogda A. El-Salamony
Article
  • 58 Downloads

Abstract

A novel polydentate Schiff base, namely (N,N′-(azanediylbis(ethane-2,1-diyl))bis(2-(((E)-(2-hydroxynaphthalen-1-yl)methylene)amino)benzamide) has been prepared through the condensation reaction between N,N′-(azanediylbis(ethane-2,1-diyl))bis(2-aminobenzamide) and 2-hydroxy 1-naphthaldehyde. The ligand and its synthesized metal complexes with Co (II), Ni(II), Cu(II), Ru(III) and Pd(II) salts have been characterized on with the help of various physicochemical studies such as elemental analyses, molar conductance, magnetic, spectral (UV–Vis, EPR, 1H NMR, MS, IR), 3D molecular modeling and thermal studies. The researchers propose a distorted five coordinate, distorted octahedral or square planar geometry for Schiff base metal complexes. The ligand ligates as polydentate one and can coordinate with two or three metal ions to form bi- or tri-nuclear metal complexes. The kinetic and thermodynamic parameters of decomposition process were computed. The in vitro antitumor activity against human breast (MCF-7) and human hepatocarcinoma (HepG2) cell lines has been investigated. The results have shown that the compounds tested are potent anticancer agents. Moreover, the scavenging activity of the tested compounds on DPPH was evaluated and compared with antioxidants ascorbic acid. The results reveal that the scavenging activity is concentration -dependent; furthermore the Schiff base ligand, complexes [Co2(L)Cl2(H2O)]·2H2O (1), and [Pd3(L)Cl4]Cl2·2H2O (10) are more efficient in quenching DPPH than the standard. In addition, the antibacterial study results of the selected compounds assayed against two pathogenic bacteria, Streptococcus pyogenes as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria have shown that these compounds exhibit a remarkably high antibacterial activity.

Keywords

Novel polydentate ligand Di- and tri-nuclear complexes Spectral studies Anticancer Antioxidant Antibacterial activity 2-Hydroxy-1-naphthaldehyde 

Supplementary material

10904_2018_1042_MOESM1_ESM.doc (276 kb)
Supplementary material 1 (DOC 276 KB)

References

  1. 1.
    M. Khedr, H.M. Marwani, Int. J. Electrochem. Sci. 7, 10074 (2012)Google Scholar
  2. 2.
    M. Mesbah, T. Douadia, F. Sahli, S. Issaadi, S. Bokazoula, S. Chafaaa, J. Mol. Struct. (2017).  https://doi.org/10.1016/j.molstruc.2017.08.09 Google Scholar
  3. 3.
    R. Miri, N. Razzaghi-asl, M.K. Mohammadi, J. Mol. Model. 19, 727 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Mumtaz, T. Mahmud, M.R. Elsegood, G.W. Weaver, J. Nucl. Med. Radiat. Ther. (2016).  https://doi.org/10.4172/2155-9619.1000310 Google Scholar
  5. 5.
    A.N. Srivastva, N.P. Singh, C.K. Shriwastaw, Arab. J. Chem. 9, 48 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Subbaraj, A. Ramu, N. Raman, J. Dharmaraj, J. Saudi Chem. Soc. 19, 207 (2015)CrossRefGoogle Scholar
  7. 7.
    P. Jayaseelan, S. Prasad, S. Vedanayaki, R. Rajavel, Arab. J. Chem. 9, S668 (2016)CrossRefGoogle Scholar
  8. 8.
    P. Jayaseelan, E. Akila, M. Usha Rani, R. Rajave, J. Saudi Chem. Soc. 20(6), 625 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Mahalakshmi, R. Rajavel, Arab. J. Chem. 7, 509 (2014)CrossRefGoogle Scholar
  10. 10.
    S.M. Sayed Abdallah, M.A. Zayed, G.G. Gehad Mohamed. Arab. J. Chem. 3, 103 (2010)CrossRefGoogle Scholar
  11. 11.
    H. Keypour, M. Shayesteh, M. Rezaeivala, K. Sayin, J. Mol. Struct. 1112, 110 (2016)CrossRefGoogle Scholar
  12. 12.
    L.-Q. Chai, K.-H. Mao, J.-Y. Zhang, K.-Y. Zhang, H.-S. Zhang, Inorg. Chim. Acta 457, 34 (2017)CrossRefGoogle Scholar
  13. 13.
    L.-Q. Chai, Y.-X. Li, L.-Ch. Chen, J.-Y. Zhang, J.-J. Huang, Inorg. Chim. Acta 444, 193 (2016)CrossRefGoogle Scholar
  14. 14.
    B. Geeta, K. Shravankumar, P. Muralidhar Reddy, E. Ravikrishna, M. Sarangapani, K. Krishna Reddy, V. Ravinder, Spectrochim. Acta A 77, 911 (2010)CrossRefGoogle Scholar
  15. 15.
    S.M. Shohayeb, R.G. Mohamed, H. Moustafa, S.M. El-Medani, J. Mol. Struct. 19, 442 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Kamacı, I. Kaya, J. Inorg. Organomet. Polym. 23, 1159 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Shokohi-pour, H. Chiniforoshan, A.A. Momtazi-borojeni, B. Notash, J. Photochem. Photobiol. B 162, 3 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Bassett, R.C. Denney, G.H. Jeffery, J.V. Mendham, Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th edn. (Longman Group, London, 1978), p. 316Google Scholar
  19. 19.
    T.S. West, Complexometry with EDTA and Reagents, 3rd edn. (DBH Ltd., Poole, 1969)Google Scholar
  20. 20.
    H.A. El-Boraey, O.A. EL-Gammal, Spectrochim. Acta A 138, 553 (2015)CrossRefGoogle Scholar
  21. 21.
    P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. Warren, H. Bokesch, S. Kenney, M.R. Boyd, J. Natl. Cancer Inst. 82, 1107 (1990)CrossRefGoogle Scholar
  22. 22.
    M.S. Blois, Nature 181, 1199 (1958)CrossRefGoogle Scholar
  23. 23.
    M.A. Wikler, F.R. Cockerill, K. Bush, M.N. Dudley, G.M. Eliopoulos, D.J. Hardy, D.W. Hecht, M.J. Ferraro, J.M. Swenson, J.F. Hindler, J.B. .Patel, M. Powell, J.D. Turnidge, M.P. .Weinstein, B.L. Zimmer, Approved Standard-Eighth Edition. M07-A8 CLSI: 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 29(2), 1087 (2009) USA; ISBN: 1-56238-689-1Google Scholar
  24. 24.
    H.A. El-Boraey, M.A. El-Salamony, A.A. Hathout, J. Incl. Phenom. Macrocycl. Chem. 86, 153 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Mahendra raj, B.H.M. Mruthyunjayaswamy, J. Saudi Chem. Soc. 21, S202 (2017)CrossRefGoogle Scholar
  26. 26.
    F. Bagheri, A. Olyaei, J. Serb. Chem. Soc. 81(10), 1111 (2016)CrossRefGoogle Scholar
  27. 27.
    H.A. El-Boraey, A.I. Mansour, Inorg. Nano-Metal Chem. 0(0), 1 (2018)Google Scholar
  28. 28.
    W.G. Geary, Coord. Chem. Rev. 7, 81 (1971)CrossRefGoogle Scholar
  29. 29.
    L.H. Abdel-Rahman, A.M. Abu-Dief, H. Moustafa, S.Kamel Hamdan, Appl. Organometal. Chem. (2016).  https://doi.org/10.1002/aoc.3555 Google Scholar
  30. 30.
    G.G. Mohamed, Spectrochim. Acta A 64, 188 (2006)CrossRefGoogle Scholar
  31. 31.
    G.G. Mohamed, N.A. Ibrahim, H.A.E. Attia, Spectrochim. Acta A 72, 610 (2009)CrossRefGoogle Scholar
  32. 32.
    M.M. Omar, G.G. Mohamed, Spectrochim. Acta A 61, 929 (2005)CrossRefGoogle Scholar
  33. 33.
    A.E.M. Ramadan, J. Mol. Struct. 1015, 56 (2012)CrossRefGoogle Scholar
  34. 34.
    H.A. El-Boraey, A.A. El-Gokha, I.E.T. El-Sayed, M.A. Azzam, Med. Chem. Res. 24, 2142 (2015)CrossRefGoogle Scholar
  35. 35.
    R.L. Dutta, A. Syamal, Elements of Magnetochemistry, 2nd edn. (Affiliated East-West Press, Delhi, 2007)Google Scholar
  36. 36.
    J.R. Anacona, N. Noriega, J. Camus, Spectrochim. Acta A 137, 20 (2015)CrossRefGoogle Scholar
  37. 37.
    H.A. El-Boraey, A.A. Serag El-Din, Spectrochim. Acta A 132, 663 (2014)CrossRefGoogle Scholar
  38. 38.
    G. Venkatachalam, R. Ramesh, Inorg. Chem. Commun. 9, 703 (2006)CrossRefGoogle Scholar
  39. 39.
    H.A. El-Boraey, A.A. Serag El-Din, I. El-Sayed, J. Therm. Anal. Calorim. 129, 1243 (2017)CrossRefGoogle Scholar
  40. 40.
    B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5, 143 (1970)CrossRefGoogle Scholar
  41. 41.
    N.B.J. Prakash, Phys. Appl. Chem. 1(2), 17 (2014)Google Scholar
  42. 42.
    M. Neelamma, P. Venkateswar Rao, G.H. Anuradha, Eur. J. Chem. 8(1), 29 (2011)Google Scholar
  43. 43.
    H.A. El-Boraey, Spectrochim. Acta A 97, 255 (2012)CrossRefGoogle Scholar
  44. 44.
    A.W. Coats, J.P. Redfern, Nature 201, 68 (1964)CrossRefGoogle Scholar
  45. 45.
    H.H. Horowitz, G. Metzger, J. Anal. Chem. 35, 1464 (1963)CrossRefGoogle Scholar
  46. 46.
    D. Arish, M. Sivasankaran Nair, Arab. J. Chem. 5, 179 (2012)CrossRefGoogle Scholar
  47. 47.
    D. Borsato, D. Galvan, J.L. Pereira, J.R. Orives, K.G. Angilelli, R.L Coppo, Braz. Chem. Soc. 25(11), 1984 (2014)Google Scholar
  48. 48.
    R.C. Maurya, S. Jhamb, S. Roy, J. Chourasia, A.K. Sharma, P. Vishwakarma, Arab. J. Chem. 8, 78 (2015)CrossRefGoogle Scholar
  49. 49.
    R. Kumari, M. Nath, Appl. Organomet. Chem. (2017).  https://doi.org/10.1002/aoc.3661 Google Scholar
  50. 50.
    S. Gautam, S. Chandra, H. Rajor, S. Agrawal, P.K. Tomar, Appl. Organomet. Chem. (2017).  https://doi.org/10.1002/aoc.3915 Google Scholar
  51. 51.
    W.T. Shier, Mammalian Cell Culture on $5 a Day: a Laboratory Manual of Low Cost Methods (University of the Philippines, Los Banos, 1991)Google Scholar
  52. 52.
    P. Kavitha, M. Rama Chary, B.V.V.A. Singavarapu, K. Laxma Reddy, J. Saudi Chem. Soc. 20, 69 (2016)CrossRefGoogle Scholar
  53. 53.
    H.A. El-Boraey, O.A. EL-Gammal, J. Incl. Phenom. Macrocycl. Chem. 90, 123 (2018)CrossRefGoogle Scholar
  54. 54.
    H.A. El-Boraey, S.M. Emam, D.A. Tolan, A.M. El-Nahas, Spectrochim. Acta A 78, 360 (2011)CrossRefGoogle Scholar
  55. 55.
    A.T. Bilgicli, Y. Tekin, E.H. Alici, M.N. Yaraşir, G. Arabaci, M. Kandaz, J. Coord. Chem. 68, 4102 (2015)CrossRefGoogle Scholar
  56. 56.
    B.G. Tweedy, Phytopathology 55, 910 (1964)Google Scholar
  57. 57.
    M. Sonmez, C. Metin, I. Berber, J. Eur. Med. Chem. 45, 1935 (2010)CrossRefGoogle Scholar
  58. 58.
    D.P. Singh, V. Grover, P. Rathi, K. Jainb, Arab. J. Chem. (2013).  https://doi.org/10.1016/j.arabjc.2013.07.004 Google Scholar
  59. 59.
    S. Arayne, N. Sultana, U. Haroon, M. Ahmed Mesaik, Bioinorg. Chem. Appl. 2009, 1 (2009)CrossRefGoogle Scholar
  60. 60.
    N. Sultana, A. Naz, B. Khan, M.S. Arayne, M.A. Mesaik, Med. Chem. Res. 19, 1210 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceMenoufia UniversityShebin El- KomEgypt
  2. 2.Medical Analysis Laboratory DepartmentUniversity of Sadat CitySadat CityEgypt

Personalised recommendations