Advertisement

Synthesis, Characterization and Cytotoxic Activity of Co(II), Ni(II), Cu(II), and Zn(II) Complexes with Nonsteroidal Antiinflamatory Drug Isoxicam as Ligand

  • Daniela Cristina Culita
  • Lora Dyakova
  • Gabriela Marinescu
  • Tanya Zhivkova
  • Rossen Spasov
  • Luminita Patron
  • Radostina Alexandrova
  • Ovidiu Oprea
Article

Abstract

Four complexes of Co(II), Ni(II), Cu(II), and Zn(II) with isoxicam (H2ISO) as ligand, namely [Co(HISO)2(H2O)2]⋅3H2O (CoIso), [Ni(HISO)2(H2O)2]⋅0.5H2O (Ni–Iso), [Cu(HISO)2(H2O)] (Cu–Iso), [Zn(HISO)2(H2O)2]⋅0.5H2O (Zn–Iso), have been synthesized and characterized by FT-IR, UV–Vis–NIR, 1H NMR, TG/DSC, elemental analysis, magnetic and conductivity measurements. The following permanent cell lines were used to evaluate the cytotoxic activity of the compounds: LSCC-SF-Mc29, strain E7 (transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29), LSR-SF-SR (transplantable sarcoma in rat, induced by Rous sarcoma virus, strain Schmidt-Ruppin), MCF-7 (luminal A type breast cancer), HeLa (human carcinoma of the uterine cervix) and Lep-3 (human non-tumor embryonal fibroblastoid cells). Short term experiments (24–72 h) with monolayer cultures were performed by MTT test, neutral red uptake cytotoxicity assay and double staining with acridine orange and propidium iodide as well as long term experiments (20 days) with 3D cancer cell colonies in semi-solid medium. The results obtained reveal that: (i) applied at a concentration range of 5–500 µg mL−1 the compounds investigated decrease in a time- and concentration-dependent manner viability and/or proliferation of the treated cells; (ii) metal complexes are more pronounced cytotoxic agents as compared to isoxicam; (iii) cell-specific response was observed—Cu–Iso expresses the highest cytotoxic activity in LSCC-SF-Mc29 (strain E7) cells, whereas Zn–Iso is the most effective compound in LSR-SF-SR and Lep-3 cells, and Co–Iso—in HeLa cells; (iv) in general, human non-tumor Lep-3 embryonic fibroblastoid cells are relatively less sensitive to the cytotoxic activity of the complexes as compared to human cancer MCF-7 and HeLa cells.

Keywords

Isoxicam Transition metal complexes Cytotoxic activity 

Notes

Acknowledgements

This study was supported by Grant No. DFNI Б-02/30 from 12.12.2014, National Science Fund, Bulgarian Ministry of Education and Science, a bilateral project between Bulgarian Academy of Sciences and Romanian Academy and partially by a grant of Ministry of Research and Innovation, Project Number PN-III-P4-ID-PCE-2016-0321. The authors thank Dr. Anamaria Hanganu for 1H NMR analysis.

References

  1. 1.
    E. Fosslien, Crit. Rev. Clin. Lab. Sci. 37, 431–502 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    C. Montejo, E. Barcia, S. Negro, A. Fernández-Carballido, Int. J. Pharm. 387, 223–229 (2010)CrossRefPubMedGoogle Scholar
  3. 3.
    T. Naruse, Y. Nishida, K. Hosono, N. Ishiguro, Carcinogenesis 27, 584–592 (2006)CrossRefPubMedGoogle Scholar
  4. 4.
    D.L. McCormick, J.M. Phillips, T.L. Horn, W.D. Johnson, V.E. Steele, R.A. Lubet, Cancer Prev. Res. 3, 73–81 (2010)CrossRefGoogle Scholar
  5. 5.
    S.V. Kumar, P. Tarun, T.A. Kumar, Indo Am. J. Pharm. Res. 3(5), 3588–3605 (2013)Google Scholar
  6. 6.
    L. Alfonso, G. Ai, R.C. Spitale, G.J. Bhat, Br. J. Cancer. 111(1), 61–67 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    E. Gurpinar, W.E. Grizzle, G.A. Piazza, Front. Oncol. 3, 18 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Xu, C.A. Rouzer, L.J. Marnett, IUBMB Life 66(12), 803–811 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    S. Xu, D.J. Hermanson, S. Banerjee, K. Ghebreselasie, G.M. Clayton, R.M. Garavito, L.J. Marnett, J. Biol. Chem. 289(10), 6799–6808 (2014)CrossRefPubMedGoogle Scholar
  10. 10.
    S. Defazio, R. Cini, J. Chem. Soc. Dalton Trans. 0, 1888–1897 (2002)CrossRefGoogle Scholar
  11. 11.
    R. Cini, G. Giorgi, A. Cinquantini, C. Rossi, M. Sabat, Inorg. Chem. 29, 5197–5200 (1990)CrossRefGoogle Scholar
  12. 12.
    G. Mohamed Gehad, E.A. El-Gamel, Nadia, Vib. Spectrosc. 36, 97–104 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Miguel Mendez-Rojas, F. Cordova-Lozano, G. Gojon-Zorrilla, E. Gonzalez-Vergara, M.A. Quiroz, Polyhedron 18, 2651–2658 (1999)CrossRefGoogle Scholar
  14. 14.
    N. Abo El-Maali, J.C. Vire, G.J. Patriarche, M.A. Ghandour, Anal. Lett. 22(15), 3025–3039 (1989)CrossRefGoogle Scholar
  15. 15.
    H.A. Mohamed, H.M.A. Wadood, O.A. Farghaly, J. Pharm. Biomed. Anal. 28, 819 (2002)CrossRefPubMedGoogle Scholar
  16. 16.
    G. Tamasi, C. Bernini, G. Corbini, N.F. Owens, L. Messori, F. Scaletti, L. Massai, P. LoGiudice, R. Cini, J. Inorg. Biochem. 134, 25–35 (2014)CrossRefPubMedGoogle Scholar
  17. 17.
    R. Cini, G. Tamasi, S. Defazio, M.B. Hursthouse, J. Inorg. Biochem. 101, 1140–1152 (2007)CrossRefPubMedGoogle Scholar
  18. 18.
    D.C. Culita, R. Alexandrova, L. Dyakova, G. Marinescu, L. Patron, R. Kalfin, M. Alexandrov, Rev. Chim. Bucharest 63(4), 384–389 (2012)Google Scholar
  19. 19.
    L. Dyakova, D.C. Culita, T. Zhivkova, M. Georgieva, R. Kalfin, G. Miloshev, M. Alexandrov, G. Marinescu, L. Patron, R. Alexandrova, Biotechnol. Biotechnol. Equip. 29(6), 1190–1200 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Mosmann, J. Immunol. Methods 65, 55–59 (1983)CrossRefPubMedGoogle Scholar
  21. 21.
    E. Borenfreund, J.A. Puerner, J. Toxicol. Lett. 24, 119–124 (1985)CrossRefGoogle Scholar
  22. 22.
    D.O. Harrison, R. Thomas, A.E. Underhill, J.K. Fletcher, P.S. Gomm, F. Hallway, Polyhedron 4(4), 681–685 (1985)CrossRefGoogle Scholar
  23. 23.
    T.H. Sanatkar, H. Hadadzadeh, J. Simpson, Z. Jannesari, J. Mol. Struct. 1049, 336–344 (2013)CrossRefGoogle Scholar
  24. 24.
    A.B.P. Lever, Inorganic Electronic Spectroscopy, 2nd edn. (Elsevier, London, 1992)Google Scholar
  25. 25.
    G.G. Mohamed, Spectrochim. Acta Part A 62, 1165–1171 (2005)CrossRefGoogle Scholar
  26. 26.
    E. Sneha Jose, J.E. Philip, A.A. Shanty, M.R.P. Kurup, P.V. Mohanan, Inorg. Chim. Acta 478, 155–165 (2018)CrossRefGoogle Scholar
  27. 27.
    F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley, Chichester, 1999)Google Scholar
  28. 28.
    Y.R. Morgan, P. Turner, B.J. Kennedy, T.W. Hambley, P.A. Lay, J.R. Biffin, H.L. Regtop, B. Warwick, Inorg. Chim. Acta 324, 150–161 (2001)CrossRefGoogle Scholar
  29. 29.
    M. Badea, I.D. Vlaicu, R. Olar, M. Constand, C. Bleotu, M.C. Chifiriuc, L. Marutescu, V. Lazar, M.N. Grecu, D. Marinescu, J. Therm. Anal. Calorim. 118, 1119–1133 (2014)CrossRefGoogle Scholar
  30. 30.
    M.A. Zayed, F.A. Nour El-Dien, G.G. Mohamed, E.A. Nadia, El-Gamel, Spectrochimica Acta Part A 60, 2843–2852 (2004)CrossRefGoogle Scholar
  31. 31.
    W.H. Mahmoud, G.G. Mohamed, M.M.I. El-Dessouky, Spectrochim. Acta Part A 122, 598–608 (2014)CrossRefGoogle Scholar
  32. 32.
    Ali, W.A.Wani, K., Saleem, Synth. React. Inorg. Met. Chem. 43, 1162–1170 (2013)CrossRefGoogle Scholar
  33. 33.
    W.J. Geary, Coord. Chem. Rev. 7, 81–122 (1971)CrossRefGoogle Scholar
  34. 34.
    S. Goswami, A. Majumdar, M. Sarkar, J. Phys. Chem. B 121, 8454–8466 (2017)CrossRefPubMedGoogle Scholar
  35. 35.
    A. van Tonder, A.M. Joubert, A.D. Cromarty, BMC Res. Notes 8, 47 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    G.I. Repetto, A. del Peso, J.L. Zurita, Nat. Protoc. 3(7), 1125–1131 (2008)CrossRefPubMedGoogle Scholar
  37. 37.
    I.L. Meek, M.A.F.J. van de Laar, H.E. Vonkeman, Pharmaceuticals (Basel) 3(7), 2146–2162 (2010)CrossRefGoogle Scholar
  38. 38.
    Y. Tasaki, J. Yamamoto, T. Omura, T. Noda, N. Kamiyama, K. Yoshida, M. Satomi, T. Sakaguchi, M. Asari, T. Ohkubo, K. Shimizu, K. Matsubara, Eur. J. Pharmacol. 676, 57–63 (2012)CrossRefPubMedGoogle Scholar
  39. 39.
    Y. Tasaki, J. Yamamoto, T. Omura, T. Sakaguchi, N. Kimura, K. Ohtaki, T. Ono, M. Sunoa, M. Asari, T. Ohkubo, T. Noda, T. Awaya, K. Shimizu, K. Matsubara, Neurosci. Lett. 521, 15–19 (2012)CrossRefPubMedGoogle Scholar
  40. 40.
    E. Gurpinar, W.E. Grizzle, G.A. Piazza, Clin. Cancer Res. 20(5), 1104–1113 (2014)CrossRefPubMedGoogle Scholar
  41. 41.
    J.E. Weder, C.T. Dillon, T.W. Hambley, B.J. Kennedy, P.A. Lay, J.R. Biffin, H.L. Regtop, N.M. Davies, Coord. Chem. Rev. 232(1–2), 95–126 (2002)CrossRefGoogle Scholar
  42. 42.
    A.S. Tarnawski, M.K. Jones, J. Mol. Med. 81(10), 627–636 (2003)CrossRefPubMedGoogle Scholar
  43. 43.
    M.I. Clemente, S. Alvarez, M.J. Serramía, O. Turriziani, M. Genebat, M. Leal, M. Fresno, M.A. Muñoz-Fernández, Antivir. Ther. 14(8), 1101–1111 (2009)CrossRefPubMedGoogle Scholar
  44. 44.
    X. Sui, L. Lei, L. Chen, T. Xie, X. Li, Oncotarget 8(54), 93279–93294 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    S. Goswami, S. Ray, M. Sarkar, Int. J. Biol. Macromol. 93(A), 47–56 (2016)CrossRefPubMedGoogle Scholar
  46. 46.
    F.P. Intini, R. Cini, G. Tamasi, M.B. Hursthouse, L.G. Marzilli, G. Natile, Inorg. Chem. 49(17), 7853–7860 (2010)CrossRefPubMedGoogle Scholar
  47. 47.
    M.R. Moya-Hernandez, A. Mederos, S. Dominguez, A. Orlandini, C.A. Ghilardi, F. Cecconi, E. González-Vergara, A. Rojas-Hernández, J. Inorg. Biochem. 95, 131–140 (2003)CrossRefPubMedGoogle Scholar
  48. 48.
    J.W. Nascimento, L.H. Santos, M.S. Nothenberg, M.M. Coelho, S. Oga, C.A. Tagliati, Pharmacology 68, 64–69 (2003)CrossRefPubMedGoogle Scholar
  49. 49.
    G. Tamasi, M. Casolaro, A. Magnani, A. Sega, L. Chiasserini, L. Messori et al., J. Inorg. Biochem. 104, 799–814 (2010)CrossRefPubMedGoogle Scholar
  50. 50.
    S. Roy, R. Banerjee, M. Sarkar, J. Inorg. Biochem. 100, 1320–1331 (2006)CrossRefPubMedGoogle Scholar
  51. 51.
    S. Chakraborty, M. Bose, M. Sarkar, Spectrochim. Acta A. 122, 690–697 (2014)CrossRefGoogle Scholar
  52. 52.
    R. Puranik, S. Bao, A.M. Bonin, R. Kaur, J.E. Weder, L. Casbolt, T.W. Hambley, P.A. Lay, P.J. Barter, K.A. Rye, Cell Biosci. 6, 9 (2016)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physical Chemistry “Ilie Murgulescu”Romanian AcademyBucharestRomania
  2. 2.Institute of NeurobiologyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Institute of Experimental Morphology, Pathology and Anthropology with MuseumBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Faculty of MedicineSofia University “St. Kliment Ohridski”SofiaBulgaria
  5. 5.Faculty of Applied Chemistry and Materials SciencePolitehnica University of BucharestBucharestRomania

Personalised recommendations