Advertisement

Fabrication of Cobalt Oxide/MWCNTs/ZnO Nanowires/Zn Plate with Enhanced Photocatalytic Activity in Both Chemical and Microbial Systems

  • Neda Mohaghegh
  • Masoud Faraji
  • Amir Abedini
Article
  • 18 Downloads

Abstract

A series of cobalt oxide/MWCNTs/ZnO NWs/Zn photocatalyst plates were successfully fabricated by electrochemical deposition of cobalt oxide and functionalized Multi-walled carbon nanotubes (f-MWCNTs) onto previously synthesized ZnO nanowires/Zn plates. The fabricated plates were examined with regard to the oxidative decomposition (acetic acid), antibacterial [Escherichia coli (E. coli) bacteria] and antifungal [Candida albicans (C. albicans)] activity under UV light irradiation and in dark. ZnO NWs/Zn modified plates by cobalt oxide and MWCNTs resulted in enhanced photocatalytic activities in both chemical and microbial systems. CO2 evaluation tests showed that the Cobalt oxide/MWCNTs/ZnO NWs/Zn could completely decompose bacterial cells under irradiation, possibly owing to the enhanced formation of reactive oxygen species (ROSs). Besides, it was found that the surface properties of photocatalyst plates are more vital for the antimicrobial properties due to a larger interface between microorganisms and plates. Therefore, it is expected that ternary Cobalt oxide/MWCNTs/ZnO NWs/Zn photocatalysts should exhibit broad antimicrobial properties. In addition, the Cobalt oxide/MWCNTs/ZnO NWs/Zn exhibited the highest photocatalytic activity in oxidative decomposition of acetic acid, probably due to the lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antimicrobial mechanism for the microorganism degradation and acetic acid decomposition over Cobalt oxide/MWCNTs/ZnO NWs/Zn were recommended and discussed.

Keywords

Photocatalysis Disinfectants Organic decomposition Water treatment ZnO nanowires/Zn plates 

References

  1. 1.
    L. Fatolahi, A. Feizbakhsh, E. Konoz, H. Ahmad Panahi, J. Inorg. Organomet. Polym Mater. 1, 28 (2018)Google Scholar
  2. 2.
    R. Dobrucka, J. Inorg. Organomet. Polym Mater. 28, 1953 (2018)CrossRefGoogle Scholar
  3. 3.
    V. Mezzanotte, M. Antonelli, S. Citterio, C. Nurizzo, Water Environ. Res. 2373, 79 (2007)Google Scholar
  4. 4.
    J. Sánchez-Oneto, F. Mancini, J.R. Portela, E. Nebot, F. Cansell, E.J.M. de la Ossa, Chem. Eng. J. 144, 361 (2008)CrossRefGoogle Scholar
  5. 5.
    J.E. Duffy, M.A. Anderson, C.G. Hill, W.A. Zeltner, Ind. Eng. Chem. Res. 39, 3698 (2000)CrossRefGoogle Scholar
  6. 6.
    F.H. AlHamedi, M.A. Rauf, S.S. Ashraf, Desalination 239, 159 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7, 2833 (2014)CrossRefGoogle Scholar
  8. 8.
    V.E. Podasca, A.L. Chibac, T. Buruiana, E.C. Buruiana, J. Coat. Technol. Res. (2016).  https://doi.org/10.1007/s11998-016-9857-6 CrossRefGoogle Scholar
  9. 9.
    N. Chouhan, R. Ameta, R.K. Meena, N. Mandawat, R. Ghildiyal, Int. J. Hydrogen Energy 41,2298(2016).CrossRefGoogle Scholar
  10. 10.
    W. Li, G. Wang, Y. Feng, Z. Li, Appl. Surf. Sci. 428, 154 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Tobajas, C. Belver, J.J. Rodriguez, Chem. Eng. J. .309, 596 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Zhang, M. Li, X. Wang, Y. Zhao, H. Wang, H. Song, Res. Chem. Intermed. (2018)  https://doi.org/10.1007/s11164-018-3528-4 CrossRefGoogle Scholar
  13. 13.
    A. Phuruangrat, N. Wongwiwat, T. Thongtem, S. Thongtem, Res. Chem. Intermed. (2018)  https://doi.org/10.1007/s11164-018-3564-0 CrossRefGoogle Scholar
  14. 14.
    M. Moradi, M. Haghighi, S. Allahyari, Process Saf. Environ. Prot. 107, 414 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Dai, G. Dawson, S. Yang, Z. Chen, L. Lu, Chem. Eng. J. 191, 571 (2012).CrossRefGoogle Scholar
  16. 16.
    M.H. Habibi, E. Shojaee, Ind. Eng. Chem. 20, 2298 (2014).CrossRefGoogle Scholar
  17. 17.
    T.K. Jana, A. Pal, K. Chatterjee, J. Alloys Compd. 653, 338 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Ahmad, E. Ahmed, Z.L. Hong, W. Ahmed, A. Elhissi, N.R. Khalid, Ultrason. Sonochem. 21, 761 (2014)CrossRefGoogle Scholar
  19. 19.
    G.M. Reda, H. Fan, H. Tian, Adv. Powder Technol. 28, 953 (2017)CrossRefGoogle Scholar
  20. 20.
    J.W. Kim, S.J. Lee, P. Biswas, T.I. Lee, J.M. Myoung, Appl. Surf. Sci. 406, 192 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Zaraska, K. Mika, K.E. Hnida, M. Gajewska, T. Łojewski, M. Jaskuła, G.D. Sulka, Mater. Sci. Eng. B 226, 94 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Zaraska, K. Mika, K. Syrek, G.D. Sulka, J. Electroanal. Chem. 801, 511 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Faraji, N. Mohaghegh, A. Abedini, New J. Chem. 42, 2058 (2018)CrossRefGoogle Scholar
  24. 24.
    B.M. Rajbongshi, S.K. Samdarshi, Mater. Sci. Eng. B 182, 21 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Sutka, T. Käämbre, R. Pärna, I. Juhnevica, M. Maiorov, U. Joost, V. Kisand, Solid-State Sci. 56, 54 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Chattopadhyay, S.P. Chakraborty, D. Laha, R. Baral, P. Pramanik, S. Roy, Cancer Nano 3, 13 (2012)CrossRefGoogle Scholar
  27. 27.
    F. Aksoy Akgul, G. Akgul, M. Kurban, Philos. Mag. 96, 3211 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, G.Y. Jung, D. Wang, Nano Lett. 13, 3017 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Kargar, Y. Jing, S.J. Kim, C.T. Riley, X. Pan, D. Wang, Acs Nano 7, 11112 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Inorg. Chem. 48, 1819 (2009)CrossRefGoogle Scholar
  31. 31.
    F. Raziq, Y. Qu, M. Humayun, A. Zada, H. Yu, L. Jing, Appl. Catal. B: Environ. 201, 486 (2017)CrossRefGoogle Scholar
  32. 32.
    J.J. Murcia, E.G. Ávila-Martínez, H. Rojas, J.A. Navío, M.C. Hidalgo, Appl. Catal. B Environ. 200, 469 (2017)CrossRefGoogle Scholar
  33. 33.
    L. Rizzo, J. Hazard. Mater. 165, 48 (2009)CrossRefGoogle Scholar
  34. 34.
    S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today. 147, 1 (2009)CrossRefGoogle Scholar
  35. 35.
    L. Rizzo, A. Fiorentino, A. Anselmo, Chemosphere. 92, 171 (2013)CrossRefGoogle Scholar
  36. 36.
    O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, Appl. Catal. B 98, 27 (2010)CrossRefGoogle Scholar
  37. 37.
    J. Wang, Z.J. Ji, Z.H. Shui, X.Y. Wang, N. Ding, H.J. Li, Adv. Mater. Res. 96, 99 (2010)CrossRefGoogle Scholar
  38. 38.
    C.S. Chen, T.G. Liu, L.W. Lin, X.D. Xie, X.H. Chen, Q.C. Liu, B. Liang, W.W. Yu, C.Y. Qiu, J. Nanopart. Res. 15, 1295 (2013)CrossRefGoogle Scholar
  39. 39.
    Z. Yan, H. Wu, A. Han, X. Yu, P. Du, Int. J. Hydrogen Energy 39, 13353 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Petroleum, Mining and Material Engineering, Central Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry FacultyUrmia UniversityUrmiaIran
  3. 3.Department of Physical Chemistry, Faculty of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations