Advertisement

Enhanced Adsorption and Antimicrobial Activity of Fabricated Apocynaceae Leaf Waste Activated Carbon by Cobalt Ferrite Nanoparticles for Textile Effluent Treatment

  • V. Suba
  • G. RathikaEmail author
  • E. Ranjith KumarEmail author
  • M. Saravanabhavan
  • Vishnu Nayak Badavath
  • K. S. Thangamani
Article
  • 38 Downloads

Abstract

Novel nano composite (ALW/CoFe2O4) adsorbent was synthesized from Apocynaceae leaf waste activated carbon (ALW) in combination with CoFe2O4by an auto combustion method for the removal of Reactive Red 141 dye and microorganisms against S. aureus, E. coli and C.albicans. The synthesized nano composite ALW/CoFe2O4 was characterized by SEM, EDX, BET, XRD, FTIR, TG & DSC and VSM. The results from these analytical techniques confirmed the aggregation of CoFe2O4 nano particles on the surface of ALW and VSM study showed its magnetic behavior. Subsequently, ALW/CoFe2O4 was adopted in batch mode adsorption studies by varying pH, adsorbent dosage, concentration and temperature. The adsorption efficiency was investigated under optimum conditions such as pH(6.5), adsorbent dosage (50 mg), contact time (70 min). The feasibility of adsorption was analyzed by fitting the data with pseudo first order, pseudo second order, Langmuir isotherm and Freundlich isotherm. The results showed that pseudo second order kinetics and Langmuir isotherm equation favour the adsorption of RR 141 on ALW/CoFe2O4. According to the thermodynamic study, it was very effective at higher temperatures and the thermodynamic parameters ∆Go, ∆Ho and ∆So were also evaluated for this adsorption. Furthermore, the antimicrobial activity of ALW/CoFe2O4 was tested by well diffusion method and compared with standard antibiotic. This ALW/CoFe2O4 exhibit good antimicrobial action with the zone of inhibition in the range of 10–17 mm. The synthesized nano composite (ALW/CoFe2O4) was evaluated for antimicrobial activityagainst (Staphylococcus aureus, Escherichia coli and Candida ablicans),usingwell diffusion methodand compared with standard antibacterial (Streptomycin) and antifungal (Amphotericin B).The antibacterial activity of ALW/CoFe2O4 against S. aureus (range between from 11.83 ± 0.23 mm to 17.5 ± 0.16 mm) and (range between E. coli 10.5 ± 0.40 to 17.0 ± 0.41 mm), while antifungistatic effectagainst C. albicans(range between 11.0 ± 0.24 to 17.6 ± 0.08), with different concentrations (100–500 mg) From the obtained results the antimicrobial activity of synthesized ALW/CoFe2O4 more or less same in the range between 11 and 17.56 mm of zone of inhibition.

Keywords

Nano composite Magnetic behaviour Surface area Adsorption Water treatment Antimicrobial activity 

References

  1. 1.
    M. Goswami, P. Phukan, Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. Environ. Chem. Eng. 5, 3508–3517 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Sukriti, A.S. Chadha, V. Pruthi, P. Anand, J. Bhatia, B.S. Kaith, Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies. J. Environ. Manag. 190, 176–187 (2017)CrossRefGoogle Scholar
  3. 3.
    C. Palma, L. Lloret, A. Puen, M. Tobar, E. Contrerasb, Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chin. J. Chem. Eng. 24, 521–528 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Yavaria, N.M. Mahmodib, P. Teymouria, B. Shahmoradia, A. Malekia, Cobalt ferrite nanoparticles: preparation, characterization and anionic dye removal capability. J. Taiwan Inst. Chem. Eng. 59, 320–329 (2016)CrossRefGoogle Scholar
  5. 5.
    W. Qiu, D. Yang, J. Xu, B. Hang, H. Jin, D. Jin, X. Peng, J. Li, H. Ge, X. Wona, Efficient removal of Cr (VI) by magnetically separable CoFe2O4/activated carbon composite. J. Alloys Compd. 678, 179–184 (2016)CrossRefGoogle Scholar
  6. 6.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, H.A. Al-Lohedan, Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic and antimicrobial properties. Mater. Chem. Phys. 204, 410–419 (2018)CrossRefGoogle Scholar
  7. 7.
    F. Huixia, C. Baiyi, Z. Deyi, Z. Jianqiang, T. Lin, Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation. J. Magn. Magn. Mater. 356, 68–72 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Dehghani, S. Hashemian, A. Shibani, Effect of calcination temperature for capability of MFe2O4 (M = Co,Ni2 and Zn) ferrite spinel for adsorption of bromophenol red. J. Ind. Eng. Chem. 48, 36–42 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Almasian, F. Najafi, M. Mirjalili, M.P. Gashti, G.C. Fard, Zwitter ionic modification of cobalt-ferrite nanofiber for the removal of anionic and cationic dyes. J. Taiwan Inst. Chem. Eng. 67, 306–317 (2016)CrossRefGoogle Scholar
  10. 10.
    D.H.K. Reddy, Y.-S. Yuna, Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016)Google Scholar
  11. 11.
    C.H.S. Chakra, K.V. Rao, T. Pavani, Antimicrobial activity of pure Cu nano particles synthesized by surfactant varied chemical reduction method. Environ. Nanotechnol. Monit. Manag. 6, 88–94 (2016)Google Scholar
  12. 12.
    R. Žalnėravičius, A. Paškevičius, M. Kurtinaitiene, A. Jagminas, Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles. J. Nanopart. Res. 18, 1–10 (2016)CrossRefGoogle Scholar
  13. 13.
    N. Sanpo, C.C. Berndt, C. Wen, J. Wang, Transition metal substituted cobalt ferrite nano particles for biomedical applications. Acta Biomater. 9, 5830–5837 (2013)CrossRefGoogle Scholar
  14. 14.
    A.H. Ashour, A.I. El-Batal, M.I.A. Abdel Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, N.M. El-okr, Antimicrobial activity of metal substituted cobalt ferrite nanoparticles synthesized by sol-gel technique. Particuology 48, 141–151 (2018)CrossRefGoogle Scholar
  15. 15.
    M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A.M. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1-x) Fe2o4; (M = Zn, Cu, Mn; x = 0, 0.5) nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 1, 644–656 (2018)CrossRefGoogle Scholar
  16. 16.
    K. Karthik, C.P. Saraswathy, Antimicrobial activity of chemically modified activated carbon of tribulus terrestris. Res. Biotechnol. 6, 42–46 (2015)Google Scholar
  17. 17.
    T.K.M.P. Kumar, T.R. Mandlimath, P. Sangeetha, P. Sakthivel, S.K. Revathi, S.K. Ashok Kumar, S.K. Sahoo, Highly efficient performance of activated carbon impregnated with Ag, ZnO and Ag/ZnO nanoparticles as antimicrobial materials. RSC Adv. 5, 108034–108043 (2015)CrossRefGoogle Scholar
  18. 18.
    K.C. Chapin, T. Lauderdale, Reagents, stains, and media: bacteriology, in Manual of Clinical Microbiology, 8th edn., ed. by P.R. Murray, E.J. Baron, J.H. Jorgensen, M.A. Pfaller, R.H. Yolken (ASM Press, Washington, DC, 2003), p. 358Google Scholar
  19. 19.
    E.R. Kumar, R. Jayaprakash, T.A. Kumar, S. Kumar, Effect of reaction time on particle size and dielectric properties of manganese substituted CoFe2O4 nano particles. J. Phys. Chem. Solid 74, 110–114 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Prakash, R. Jayaprakash, G. Neri, A comparative study of the synthesis of CdO nanoplatelets by an albumen-assisted isothermal evaporation method. J. Alloys Compd. 624, 258–265 (2015)CrossRefGoogle Scholar
  21. 21.
    D. Chen, Z.Y. Zeng, Y. Zeng, F. Zhang, M. Wang, Removal of methylene blue and mechanism on magnetic γ-Fe2O3/SiO2 nano composite from aqueous solution. Water Resour. Ind. 15, 1–13 (2016)CrossRefGoogle Scholar
  22. 22.
    M.H. Do, N.H. Phan, T.D. Nguyen, T.T.S. Phan, V.K. Nguyen, T.T. Trang, T.K.P. Nguyen, Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere 85, 1269–1276 (2011)CrossRefGoogle Scholar
  23. 23.
    G. Wang, Y. Ma, Z. Wei, M. Qi,, Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem. Eng. J. 289, 150–160 (2016)CrossRefGoogle Scholar
  24. 24.
    T.A. Khan, R. Rahman, E.A. Khan, Decolorization of bismarck brown R and crystal violet in liquid phase using modified pea peels: non-linear isotherm and kinetics modeling. Model. Earth Syst. Environ. 2, 1–11 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Huang, W. Wang, Q. Feng, F. Dong, Preparation of magnetic clinoptilolite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: kinetic, equilibrium and thermodynamic studies. J. Saudi Chem. Soc. 21, 58–66 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Sheshmani, B. Falahat, F.R. Nikmaram, Preparation of magnetic graphene oxide-ferrite nanocomposites for oxidative decomposition of Remazol Black B. Int. J. Biol. Macromol 97, 671–678 (2017)CrossRefGoogle Scholar
  27. 27.
    E. Altıntıg, H. Altundag, M. Tuzen, A. Sarıc, Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des. 122, 151–163 (2017)CrossRefGoogle Scholar
  28. 28.
    I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Removal of congo red from solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61, 492–501 (2005)CrossRefGoogle Scholar
  29. 29.
    R. Kamaraj, P. Ganesan, J. Lakshmi, S. Vasudevan, Removal of copper from water by electro coagulation process—effect of alternating current (AC) and direct current (DC). Environ. Sci. Pollut. Res. 20, 399–412 (2013)CrossRefGoogle Scholar
  30. 30.
    N.S. Alahmadi, J.W. Betts, F. Cheng, M.G. Francesconi, S.M. Kelly, A. Kornherr, T.J. Prior, J.D. Wadhawan, Synthesis and antibacterial effects of cobalt–cellulose magnetic nanocomposites. RSC Adv. 7, 20020–20026 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. Suba
    • 1
    • 2
  • G. Rathika
    • 1
    Email author
  • E. Ranjith Kumar
    • 3
    Email author
  • M. Saravanabhavan
    • 2
  • Vishnu Nayak Badavath
    • 4
  • K. S. Thangamani
    • 2
  1. 1.Department of ChemistryP.S.G College of Arts and ScienceCoimbatoreIndia
  2. 2.Department of ChemistryDr. N.G.P. Institute of TechnologyCoimbatoreIndia
  3. 3.Department of PhysicsDr. N.G.P. Institute of TechnologyCoimbatoreIndia
  4. 4.Department of Microbiology, Faculty of MedicineChulalongkorn UniversityBangkokThailand

Personalised recommendations