Advertisement

Base and Catalyst-Free Preparation of Silyl Ethers in the Choline Chloride/Urea Deep Eutectic Solvent (DES)

  • Mohammad Galehassadi
  • Samira Pourreza
Article
  • 11 Downloads

Abstract

An efficient, fast, green, and mild procedure is reported for preparation of silyl ethers from aliphatic, benzylic, allylic, propargylic alcohols, phenols, naphthols, and some phenolic drugs. In this method, choline chloride/urea (ChCl/urea) deep eutectic solvent (DES) is used as an environmentally benign reaction medium. Silylation was accomplished by employing trimethylsilylchloride (TMSCl), triethylsilylchloride (TESCl), and t-butyldimethylsilylchloride (TDSCl) as the silylating agents. The significant advantages offered by this green protocol are high yields, operational simplicity, short reaction time, and also avoiding the use of any environmentally hazardous solvents, bases, and catalysts. This procedure can also be utilized in large scale silylation for industrial applications.

Keywords

Silyl ethers Alcohols Phenols Deep eutectic solvent Silylating agents 

Notes

Acknowledgements

The authors sincerely acknowledge the Research Office of Azarbaijan Shahid Madani University for financial support.

Supplementary material

10904_2018_1028_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1598 KB)

References

  1. 1.
    J.K. Fink Chemicals and Methods for Conservation and Restoration: Paintings, Textiles, Fossils, Wood, Stones, Metals and Glas (Scrivener Publishing, Beverly, 2017), pp. 113–147Google Scholar
  2. 2.
    H. He, Q. Tao, J. Zhu, P. Yuan, W. Shen, S. Yang, Silylation of clay mineral surfaces. Appl. Clay Sci. 71, 15–20 (2013)CrossRefGoogle Scholar
  3. 3.
    I. Mohammed-Ziegler, G. Marosi, S. Matko, H. Zoltan, A. Toth, Silylation of wood for potential protection against Biodegradation. An ATR-FTIR, ESCA and contactangle study. Polym. Adv. Technol. 14, 790–795 (2003)CrossRefGoogle Scholar
  4. 4.
    M. Mahkam, M. Assadi, N. Golipour, PH-sensitive hydrogel containing acetaminophen silyl ethers for colon-specific drug delivery. J. Des. Monomers Polym. 6, 607–615 (2006)CrossRefGoogle Scholar
  5. 5.
    S.H. Langer, S. Connell, I. Wender, Preparation and properties of trimethylsilyl ethers and related compounds. J. Org. Chem. 23, 50–58 (1958)CrossRefGoogle Scholar
  6. 6.
    G.A. Olah, B.G.B. Gupta, S.C. Narang, R. Malhotra, Synthetic methods and reactions, transformations with chlorotrimethylsilane/sodium iodide, a convenient in situ iodotrimethylsilane reagent. J. Org. Chem. 44, 1247–1251 (1979)CrossRefGoogle Scholar
  7. 7.
    B.A. Dsa, D.M. leod, J.G. Verkade, Nonionic superbase-catalyzed silylation of alcohols. J. Org. Chem. 62, 5057–5061 (1997)CrossRefGoogle Scholar
  8. 8.
    D. Zareyee, R. Asghari, M. Khalilzadeh, Silylation of alcohols and phenols with Hexamethyldisilazane over highly reusable propyl sulfonic acid functionalized nanostructured SBA-15. Chin. J. Catal. 32, 1864–1868 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Ohta, N. Miyoshi, Y.a. Sakat, Y. Okamoto, M. Hayashi, Y. Watanabe, A N-heterocyclic carbene Ni(II) complex bearing bis(cyclopentadienyl) ligands as a precatalyst for the dehydrogenative silylation of alcohols with hydrosilanes. J. Tetrahedron Lett. 56, 2910–2912 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Wang, R.K. Akhani, S.L. Wiskur, Diastereoselective and enantioselective silylation of 2-Arylcyclohexanols. Org. Lett. 17, 2408–2411 (2015)CrossRefPubMedGoogle Scholar
  11. 11.
    M.A. Brook, Silicon in Organic, Organometallic and Polymer Chemistry (Wiley, New York, 2000), pp. 189–190Google Scholar
  12. 12.
    T. Suzuki, T. Watahiki, T. Oriyama, A novel and efficient method for the silylation of alcohols with methallylsilanes catalyzed by Sc(OTf)3. Tetrahedron Lett. 41, 8903–8906 (2000)CrossRefGoogle Scholar
  13. 13.
    T. Watahiki, M. Masaya, T. Oriyama, A novel and simple method for the silylation of alcohols in DMSO–hexane without a catalyst. Green Chem. 5, 82–84 (2003)CrossRefGoogle Scholar
  14. 14.
    Z.H. Zhang, T.S. Li, F. Yang, C.G. Fu, Montmorillonite clay catalysis XI1: protection and deprotection of hydroxyl group by formation and cleavage of trimethylsilyl ethers catalysed by montmorillonite K-10. Synth. Commun. 28, 3105–3114 (1998)CrossRefGoogle Scholar
  15. 15.
    A. Hosomi, H. Sakurai, Protection of alcohols and acids with allylsilanes catalyzed by iodine or iodotrimethylsilane in chlorinated hydrocarbon. Chem. Lett. 10, 85–88 (1981)CrossRefGoogle Scholar
  16. 16.
    H. Firouzabadi, B. Karimi, Zinc chloride catalyzed silylation of alcohols and phenols by hexamethyldisilazane. A highly chemoselective reaction. Synth. Commun. 23, 1633–1641 (1993)CrossRefGoogle Scholar
  17. 17.
    H. Firouzabadi, A.R. Sardarian, Z. Hayat, B. Karimi, S. Tangestaninejad, Nitrogen ligand complexes of metal chlorides as effective catalysts for the highly regio- and chemoselective silylation of hydroxyl groups with hexamethyldisilazane (HMDS) at room temperature. Synth. Commun. 27, 2709–2719 (1997)CrossRefGoogle Scholar
  18. 18.
    M.R. Saidi, R. Yousefi, N. Azizi, Efficient and practical protocol for silylation of hydroxyl groups using reusable lithium perchlorate dispread in silica gel under neutral condition. J. Organomet. Chem. 691, 817–820 (2006)CrossRefGoogle Scholar
  19. 19.
    S.S. Kim, S.T. Kadam, Mild and efficient silylation of alcohols and phenols with HMDS using Bi(OTf)3 under solvent-free condition. J. Organomet. Chem. 694, 2562–2566 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor- Baltork, S. Chahardahcheric, Z. Tavakoli, Rapid and highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) catalyzed by reusable zirconyl triflate, [ZrO (OTf)2]. J. Organomet. Chem. 693, 2041–2046 (2008)CrossRefGoogle Scholar
  21. 21.
    J.S. Yadav, B.V. Reddy, S.A. Basak, K.G. Baishya, A.V. Narsaiah, Indium tribromide: an efficient catalyst for the silylation of hydroxy groups by the activation of hexamethyldisilazane. Synthesis 22, 3831–3834 (2006)CrossRefGoogle Scholar
  22. 22.
    V.H. Tillu, V.H. Jadhav, H.B. Borate, R.D. Wakharkar, Silylation of alcohols, phenols and naphthols with HMDS catalyzed by H-beta zeolite. Arkivoc 14, 83–88 (2004)Google Scholar
  23. 23.
    K. Khazaei, M.A. Zolfigol, Z. Tanbakouchian, M. Shiri, K.J. Niknam, 1, 3-Dibromo-5,5-diethylbarbituric acid as an efficient catalyst for the protection of various alcohols with HMDS under solvent-free conditions. J. Catal. Commun. 8, 917–920 (2007)CrossRefGoogle Scholar
  24. 24.
    A.V. Narsaiah, Lanthanum trichloride: an efficient catalyst for the silylation of hydroxyl groups by activating hexamethyldisilazane (HMDS). J. Organomet. Chem. 692, 3614–3618 (2007)CrossRefGoogle Scholar
  25. 25.
    S.T. Kadam, S.S. Kim, Catalyst-free silylation of alcohols and phenols by promoting HMDS in CH3NO2 as solvent. Green Chem. 12, 94–98 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Rub, B. König, Low melting mixtures in organic synthesis—an alternative to ionic liquids. Green Chem. 14, 2969–2982 (2012)CrossRefGoogle Scholar
  27. 27.
    Q.H. Zhang, K.D. Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    Y.A. Sonawane, S.B. Phadtare, B.N. Borse, A.R. Jagtap, G.S. Shankarling, Synthesis of diphenylamine-based novel fluorescent styryl colorants by Knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent. J. Org. Lett. 12, 1456–1459 (2010)CrossRefGoogle Scholar
  29. 29.
    P.M. Pawar, K.G. Jarag, G.S. Shankarling, Environmentally benign and energy efficient methodology for condensation: an interesting facet to the classical Perkin reaction. Green Chem. 13, 2130–2134 (2011)CrossRefGoogle Scholar
  30. 30.
    A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1, 70–71 (2003)CrossRefGoogle Scholar
  31. 31.
    C.R. Ashworth, R.P. Matthews, T. Welton, P.A. Hunt, Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Phys. Chem. Chem. Phys. 18, 18145–18160 (2016)CrossRefPubMedGoogle Scholar
  32. 32.
    A. Moshtaghi Zonouz, D. Moghani, Green and highly efficient synthesis of pyranopyrazoles in choline chloride/urea deep eutectic solvent. Synth. Commun. 46, 220–225 (2016)CrossRefGoogle Scholar
  33. 33.
    N. Azizi, S. Dezfooli, M. Khajeh, H.M. Mahmoudi, Efficient deep eutectic solvents catalyzed synthesis of pyran and benzopyran derivatives. J. Mol. Liq. 186, 76–80 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Zhaoa, G.A. Bakerb, Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J. Chem. Technol. Biotechnol. 88, 3–12 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Mota -M, R.-J. Sánchez-Leija, A. Carranza, J.-A. Pojman, F. del Monte, G. Luna-Bárcenas, Free-radical polymerizations of and in deep eutectic solvents: green synthesis of functional materials. Prog. Polym. Sci. 78, 139–153 (2018)CrossRefGoogle Scholar
  36. 36.
    F. del Monte, D. Carriazo, M.-C. Serrano, M.-C. Gutirrez, M.L. Ferrer, Deep eutectic solvents in polymerizations: a greener alternative to conventional syntheses. ChemSusChem 7, 999–1009 (2014)CrossRefPubMedGoogle Scholar
  37. 37.
    R.J. Sánchez-Leija, J.R. Torres-Lubián, A. Reséndiz-Rubio, G. Luna-Bárcenas, J.D. Mota-Morales, Enzyme-mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Adv. 6, 13072–13079 (2016)CrossRefGoogle Scholar
  38. 38.
    J.D. Mota-Morales, M.C. Gutiérrez, M.L. Ferrer, R. Jiménez, P. Santiago, I.C. Sanchez, M. Terrones, F. del Monte, G. Luna-Bárcenas, Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents. J. Mater. Chem. 1, 3970–3976 (2013)CrossRefGoogle Scholar
  39. 39.
    D. Carriazo, M.C. Serrano, M.C. Gutiérrez, M.C. Ferrer, F. Monte, Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 41, 4996–5014 (2012)CrossRefPubMedGoogle Scholar
  40. 40.
    A. Abri, M.G. Assadi, S. Pourreza, Mild and highly efficient method for the preparation of silyl ethers using Fe(HSO4)3/Et3N by chlorosilanes. J. Chin. Chem. Soc. 59, 1449–1454 (2012)CrossRefGoogle Scholar
  41. 41.
    Du Cuiling, Z. Binyuan, C. Xiao-Bo, B. Nick, Y. Haiyan, Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid. Sci. Rep. 6, 1–14 (2016)CrossRefGoogle Scholar
  42. 42.
    D. Ganesh, Deep eutectic solvents synthesis, characterization and applications in pretreatment of lignocellulosic biomass. Theses and Dissertations 1156 (2017)Google Scholar
  43. 43.
    L.N. Mander, J.V. Turner, Chloroethoxy (trimethyl) silane: a hard-base trap which preserves tms ether groups and improves the wittig methylenation of gibberellins. Tetrahedron Lett. 22, 4149–4152 (1981)CrossRefGoogle Scholar
  44. 44.
    V.H. Jadhav, K.S. Ajish Kumar, V.D. Chaudhar, D.D. Dhavale, Facile method for trimethylsilylation of alcohols using hexamethyldisilazane and ammonium thiocyanate under neutral conditions. Synth. Commun. 37, 1363–1370 (2007)CrossRefGoogle Scholar
  45. 45.
    H. Tajik, N. Khodabakhsh, S. Karimian, Silylation of alcohols and phenols by HMDS in the presence of ionic liquid and silica-supported ionic liquids. Iran. J. Catal. 3, 107–113 (2013)Google Scholar
  46. 46.
    A. Ziyai-Halimjani, M.R. Saidi, Silylation of Alcohols and phenols using HMDS catalyzed by SiO2-Cl in solution and solvent-free conditions. J. Sci. 17, 123–126 (2006)Google Scholar
  47. 47.
    M.G. Assadi, N. Golipour, Synthesis and characterization of methylsalicylate and acetaminophen silyl ether canditates for prodrugs. J. Main Gr. Chem. 5, 179–190 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations