Advertisement

Green Synthesis and Electrical Properties of p-CuO/n-ZnO Heterojunction Diodes

  • Sridevi Annathurai
  • Siva Chidambaram
  • Balraj Baskaran
  • G. K. D. Prasanna Venkatesan
Article
  • 13 Downloads

Abstract

Green production of nanomaterials and their materials properties studies are majorly important for the futuristic development of nanodevices. We had green synthesized the ZnO and CuO nanoparticles using the extract of “Eucalyptus globulus” leaves. The obtained ZnO and CuO nanoparticles were studied for their structural, morphological and optical properties. The green synthesized CuO and ZnO nanoparticles have showed the crystalline size of about 12.29 and 10.16 nm. The transmission electron microscopic images of green synthesized ZnO and CuO nanoparticles revealed the morphological information and their respective average sizes of 46 and 32 nm. Optical absorbance spectrum revealed the existence of morphology based quantum confinement in the green ZnO and CuO nanoparticles. Further we have fabricated the p-CuO/n-ZnO heterojunction device using the green synthesized nanoparticles and also evaluated the electrical properties of the p–n junction diode. Under the light illumination the photodiode characteristic were studied for the obtained p–n junction diode. Finally, the energy band diagram of the photodiode responsible for the electronic transport had also discussed.

Graphical Abstract

Keywords

Green synthesis p–n Heterojunction Electrical properties Photodiode 

References

  1. 1.
    T.K.S. Wong, S. Zhuk, S.M. Panah, G.K. Dalapati, Materials 9, 271 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Bhaumik, A.M. Shearin, R. Patel, K. Ghosh, Phys. Chem. Chem. Phys. 16, 11054 (2014)CrossRefGoogle Scholar
  3. 3.
    Ü Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V.C.S.J. Avrutin, S.-J. Cho, H. Morkoç. J. Appl. Phys. 98, 11 (2005)CrossRefGoogle Scholar
  4. 4.
    M. Jayapriya, M. Arulmozhi, B. Balraj, Ceram. Int. 44, 13152 (2018)CrossRefGoogle Scholar
  5. 5.
    C. Vivek, C. Siva, G. Mohan Kumar, J. Mater. Sci. Mater. Electron. 29, 667 (2018)CrossRefGoogle Scholar
  6. 6.
    O.C. Boon, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536 (2018)CrossRefGoogle Scholar
  7. 7.
    P. Mahsa, A. Habibi-Yangjeh, S.R. Pouran, J. Ind. Eng. Chem. 62, 1 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Zhengxin, M. Jia, B. Abraham, J.C. Blake, D. Bodine, J.T. Newberg, L. Gundlach, Langmuir 34, 961 (2017)Google Scholar
  9. 9.
    G. Zheng, X. Chen, J. Li, J.-H. Liu, X.-J. Huang, Langmuir 27, 6193 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Rafiq, N. Tripathy, M.S. Ahn, K.S. Bhat, T. Mahmoudi, Y. Wang, J.Y. Yoo, D.W. Kwon, H.Y. Yang, Y.-B. Hahn, Sci. Rep. 7, 5715 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Sajad, C. Cao, G. Nabi, W.S. Khan, M. Tahir, M. Tanveer, I. Aslam, Opt. Int. J. Light Electron Opt. 130, 372 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Mridha, D. Basak, Semicond. Sci. Technol. 21, 928 (2006)CrossRefGoogle Scholar
  13. 13.
    B. Farshad, H. Khojasteh, M.S. Niasari, Materials 10, 697 (2017)CrossRefGoogle Scholar
  14. 14.
    G. Sangeetha, S. Rajeshwari, R. Venckatesh, Mater. Res. Bull. 46, 2560 (2011)CrossRefGoogle Scholar
  15. 15.
    S.S.M.S. Arif, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, ACS Appl. Mater. Interface 4, 3893 (2012)CrossRefGoogle Scholar
  16. 16.
    M.A. Hussein, M.L. Baynosa, D. Tuma, J.J. Shim, Appl. Catal. B 203, 416 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Yifeng, G. Yu, Z. Shan, Z. Li, J. Photochem. Photobiol. B 186, 131 (2018)CrossRefGoogle Scholar
  18. 18.
    R.R. Prabhu, A.C. Saritha, M.R. Shijeesh, M.K. Jayaraj, Mater. Sci. Eng. B 220, 82 (2017)CrossRefGoogle Scholar
  19. 19.
    G. Amrita, B.B. Show, S. Ghosh, N. Mukherjee, G. Bhattacharya, S.K. Datta, A. Mondal, RSC Adv. 4(93), 51569–51575 (2014)CrossRefGoogle Scholar
  20. 20.
    K.M. Arif, Y. Wahab, R. Muhammad, M. Tahir, S. Sakrani, Appl. Surf. Sci. 435, 718 (2018)CrossRefGoogle Scholar
  21. 21.
    R. Krithikadevi, M. Arulmozhi, C. Siva, B. Balraj, G. Mohan Kumar, J. Mater. Sci. Mater. Electron. 28, 5440 (2017)CrossRefGoogle Scholar
  22. 22.
    C. Siva, G. Ganga, G. Mohan Kumar, P. Baraneedharan, B. Karthikeyan, M. Sivakumar, J. Colloid Interface Sci. 452, 169 (2015)CrossRefGoogle Scholar
  23. 23.
    H.T. Hsueh, S.J. Chang, W.Y. Weng, C.L. Hsu, T.J. Hsueh, F.Y. Hung, S.L. Wu, B.T. Dai, IEEE Trans. Nanotechnol. 11, 127 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringM. Kumarasamy College of EngineeringKarurIndia
  2. 2.Department of Physics and NanotechnologySRM Institute of Science and TechnologyChennaiIndia
  3. 3.Department of Electrical and Electronics EngineeringSri Krishna College of TechnologyCoimbatoreIndia
  4. 4.Karpagam Academy of Higher EducationCoimbatoreIndia

Personalised recommendations