Advertisement

The Electrocatalytic Stability Investigation of a Proton Manager MOF for the Oxygen Reduction Reaction in Acidic Media

  • Samaneh Sohrabi
  • Masoumeh Ghalkhani
  • Saeed Dehghanpour
Article
  • 18 Downloads

Abstract

In this paper, regarding outstanding electrocatalytic properties of metal organic frame works for fuel cell applications, we have synthesised and investigated comprehensively the elecrocatalytic stability of PCN-222 (PCN = porous coordination network) for the oxygen reduction reaction (ORR) in acidic media. ORR is a main reaction that take parts in cathodic part of a fuel cell and preparation of a stable and efficient electrocatalyst for this reaction will effectively improve the fuel cell output. The 3D heme-like metal organic framework (MOF) was constructed from Fe(III) porphyrin linkers and Zr6 clusters. The catalyst stability tests manifested that the PCN-222 is much more stable than the other metal macrocycles. The assembled PCN-222 catalyst possesses ultra stability, high activity and excellent tolerance to the crossover effect of methanol, which could be used as a unique alternative to common ORR catalysts in an acidic direct methanol fuel cell.

Graphical Abstract

Keywords

Stability Metal organic framework Fuel cell Acidic media Oxygen reduction reaction 

Notes

Acknowledgements

Financial support by the Alzahra University is gratefully acknowledged.

Supplementary material

10904_2018_1025_MOESM1_ESM.docx (163 kb)
Supplementary material 1 (DOCX 162 KB)

References

  1. 1.
    J. Liu, M. Jiao, L. Lu, H.M. Barkholtz, Y. Li, Y. Wang, Nat. Commun. 8, 15938 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Chen, Y. Yang, Z. Guo, D. Jiang, Adv. Mater. 23, 3149 (2011)CrossRefGoogle Scholar
  3. 3.
    B. Cao, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Inorg. Chem. 54, 2128 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Zadick, L. Dubau, N. Sergent, G. Berthome, M. Chatenet, ACS Catal 5, 4819 (2015)CrossRefGoogle Scholar
  5. 5.
    D.S. Su, G. Sun, Angew. Chemie Int. Ed. 50, 11570 (2011)CrossRefGoogle Scholar
  6. 6.
    G. Wu, P. Zelenay, Acc. Chem. Res. 46, 1878 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Morozan, S. Campidelli, A. Filoramo, B. Jousselme, S. Palacin, Carbon 49, 4839 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Rojas-Carbonell, C. Santoro, A. Serov, P. Atanassov, Electrochem. Commun. 75, 38 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332, 443 (2011)CrossRefGoogle Scholar
  10. 10.
    C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, Electrochim. Acta 53, 4937 (2008)CrossRefGoogle Scholar
  11. 11.
    H. Meier, U. Tschirwitz, E. Zimmerhackl, W. Albrecht, G. Zeitler, J. Phys. Chem. 81, 712 (1977)CrossRefGoogle Scholar
  12. 12.
    A.A. Tanaka, C. Fierro, D. Scherson, E.B. Yaeger, J. Phys. Chem. 91, 3799 (1987)CrossRefGoogle Scholar
  13. 13.
    H. Zeng. Y.H. Zhang, T.M. Ma,·W.S. Huo, J. Inorg. Organomet. Polym. (2018).  https://doi.org/10.1007/s10904-018-0932-6 CrossRefGoogle Scholar
  14. 14.
    V. Nallathambi, J.-W. Lee, S.P. Kumaraguru, G. Wu, B.N. Popov, J. Power Sources. 183, 34 (2008)CrossRefGoogle Scholar
  15. 15.
    N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’keeffe, O.M. Yaghi, Science 300, 1127 (2003)CrossRefGoogle Scholar
  16. 16.
    H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276 (1999)CrossRefGoogle Scholar
  17. 17.
    M. Kondo, T. Okubo, A. Asami, S. Noro, T. Yoshitomi, S. Kitagawa, T. Ishii, H. Matsuzaka, K. Seki, Angew Chem. Int. Ed. 38, 140 (1999)CrossRefGoogle Scholar
  18. 18.
    K.M. Choi, D. Kim, B. Rungtaweevoranit, C.A. Trickett, J.T.D. Barmanbek, A.S. Alshammari, P. Yang, O.M. Yaghi, J. Am. Chem. Soc. 139, 356 (2017)CrossRefGoogle Scholar
  19. 19.
    C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, Nat. Rev. Mater. 2, 17045 (2017)CrossRefGoogle Scholar
  20. 20.
    C. Young, J. Wang, J. Kim, Y. Sugahara, J. Henzie, Y. Yamauchi, Chem. Mater. 30, 3379 (2018)CrossRefGoogle Scholar
  21. 21.
    W. Zhang, X. Jiang, Y. Zhao, A. Carné-Sánchez, V. Malgras, J. Kim, J.H. Kim, S. Wang, J. Liu, J.-S. Jiang, Chem. Sci. 8, 3538 (2017)CrossRefGoogle Scholar
  22. 22.
    C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li, Y. Yamauchi, Mater. Horizons 5, 394 (2018)CrossRefGoogle Scholar
  23. 23.
    R.R. Salunkhe, C. Young, J. Tang, T. Takei, Y. Ide, N. Kobayashi, Y. Yamauchi, Chem. Commun. 52, 4764 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Tang, Y. Yamauchi, Nat. Chem. 8, 638 (2016)CrossRefGoogle Scholar
  25. 25.
    S.R. Ahrenholtz, C.C. Epley, A.J. Morris, J. Am. Chem. Soc. 136, 2464 (2014)CrossRefGoogle Scholar
  26. 26.
    V. Stavila, A.A. Talin, M.D. Allendorf, Chem. Soc. Rev. 43, 5994 (2014)CrossRefGoogle Scholar
  27. 27.
    P.M. Usov, B. Huffman, C.C. Epley, M.C. Kessinger, J. Zhu, W.A. Maza, ACS Appl. Mater. Interfaces 9, 335399 (2017)CrossRefGoogle Scholar
  28. 28.
    C.W. Kung, Y.S. Li, M.H. Lee, S.Y. Wang, W.H. Chiang, K.C. Ho, J. Mater. Chem. A 4, 10673 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak, P.V. Wiper, J.R. Darwent, M.J. Rosseinsky, Angew. Chem. 124, 7558 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Ranjbar, M.A. Taher, J. Porous Mater. 23, 1249 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Yuan, J.-S. Qin, C.T. Lollar, H.-C. Zhou, ACS Cent. Sci. 4, 440 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Foltin, G.J. Stueber, E.R. Bernstein, J. Chem. Phys. 114, 8971 (2001)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, X. Zhang, J.A. Johnson, Y.-S. Chen, J. Zhang, J. Am. Chem. Soc. 138, 8380 (2016)CrossRefGoogle Scholar
  34. 34.
    D. Feng, Z.Y. Gu, J.R. Li, H.L. Jiang, Z. Wei, H.C. Zhou, Angew. Chemie Int. Ed. 51, 10307 (2012)CrossRefGoogle Scholar
  35. 35.
    D. Feng, W.C. Chung, Z. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, H.C. Hong-Cai, Zhou, J. Am. Chem. Soc. 135, 17105 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Zheng, M. Wu, F. Jiang, W. Su, M. Hong, Chem. Sci. 6, 3466 (2015)CrossRefGoogle Scholar
  37. 37.
    D. Feng, Z.Y. Gu, Y.P. Chen, J. Park, Z. Wei, Y. Sun, M. Bosch, S. Yuan, H.C. Zhou, J. Am. Chem. Soc. 136, 17714 (2014)CrossRefGoogle Scholar
  38. 38.
    R.C. Klet, Y. Liu, T.C. Wang, J.T. Hupp, O.K. Farha, J. Mater. Chem. A. 4, 1479 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Sohrabi, S. Dehghanpour, M. Ghalkhani, Chem. Cat. Chem. 8, 2356 (2016)Google Scholar
  40. 40.
    J. Wang, Analytical Electrochemistry (Wiley, New York, 2006)CrossRefGoogle Scholar
  41. 41.
    M. Jahan, Q. Bao, K.P. Loh, J. Am. Chem. Soc. 134, 6707 (2012)CrossRefGoogle Scholar
  42. 42.
    M. Jahan, Z. Liu, K.P. Loh, Adv. Funct. Mater. 23, 5363 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryAlzahra UniversityTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations