Advertisement

Theoretical Study of Interaction Between Methanol and Metal Encapsulated Single Walled Carbon Nanotubes

  • Forough Kalantari Fotooh
  • Tayebeh Askari Baghemiyani
Article
  • 3 Downloads

Abstract

Interaction of methanol (MeOH) with the outer (exohedral) and inner (endohedral) sides of (10, 0) single walled carbon nanotube (SWCNT) and transition metal (Ni, Pd) encapsulated SWCNT were investigated using density functional theory (DFT). MeOH was inserted to the nanotube from both –CH3 and –OH sides and all structures were fully relaxed. Binding energies show the exothermic interaction of MeOH and SWCNT which increases by inserting Metals to SWCNT. It was found that Endohedral adsorption is more favored over the exohedral one in all structures. Electronic results show a few modifications in band structures and density of states of pristine SWCNT. However endohedral adsorption of MeOH to Ni@SWCNT alters its electronic and magnetic properties. Methanol adsorption reduces the band gap of Pd@SWCNT too. Spin polarized partial densities of states (PDOS) were also investigated for further comparative studies. According to our results Ni or Pd encapsulated SWCNT are expected to be a potential candidate for MeOH adsorption.

Keywords

DFT calculations Nanotube Band structures Density of states Transition metals 

References

  1. 1.
    C. Lu, H. Chiu, Chem. Eng. Sci. 61, 1138 (2006)CrossRefGoogle Scholar
  2. 2.
    Q. Zhou, C. Wang, Z. Fu et al., Comput. Mater. Sci. 82, 337 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Soltani, A. Sousaraei, M. Mirarab, H. Balakheyli, J. Saudi Chem. Soc. (2015)Google Scholar
  4. 4.
    T.A. Baghemiyani, F. Kalantari Fotooh, J. Inorg. Organomet. Polym Mater. 27, 1274 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Hamadanian, F.K. Fotooh, Comput. Mater. Sci. 82, 497 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Kuang, G. Wang, Y. Li et al., Appl. Surf. Sci. 346, 24 (2015)CrossRefGoogle Scholar
  7. 7.
    B. Nieto-Ortega, J. Villalva, M. Vera-Hidalgo et al., Angew. Chem. Int. Ed. 56, 12240 (2017)CrossRefGoogle Scholar
  8. 8.
    K.S. Vasu, D. Pramanik, S. Kundu et al., J. Mater. Chem. C 6, 6483 (2018)CrossRefGoogle Scholar
  9. 9.
    L. Lvova, M. Mastroianni, G. Pomarico et al., Sens. Actuators, B 170, 163 (2012)CrossRefGoogle Scholar
  10. 10.
    J.A. Talla, Phys. B 407, 966 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Dhall, N. Jaggi, R. Nathawat, Sens. Actuators, A 201, 321 (2013)CrossRefGoogle Scholar
  12. 12.
    H.L. Zhuang, G.P. Zheng, A.K. Soh, Comput. Mater. Sci. 43, 823 (2008)CrossRefGoogle Scholar
  13. 13.
    X.J. Du, J.M. Zhang, S.F. Wang et al., Eur. Phys. J. B 72, 119 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Hamadanian, Z. Tavangar, B. Noori, J. Mol. Struct. 1076, 49 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Bastos, I. Camps, J. Mol. Model. 20, 1 (2014)CrossRefGoogle Scholar
  16. 16.
    T.T.H. Nguyen, V.K. Le, C. Le Minh et al., Comput. Theor. Chem. 1100, 46 (2017)CrossRefGoogle Scholar
  17. 17.
    M.M. Larijani, S. Safa, Acta Phys. Pol. 126, 732 (2014)CrossRefGoogle Scholar
  18. 18.
    I. Rossetti, G. Ramis, A. Gallo et al., Int. J. Hydrogen Energy 40, 7609 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Wanno, C. Tabtimsai, Superlatt. Microstruct. 67, 110 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Zhou, W.Q. Tian, X.-L. Wang, Sens. Actuators B 151, 56 (2010)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, Y. Gui, Z. Dai, Appl. Surf. Sci. 315, 196 (2014)CrossRefGoogle Scholar
  22. 22.
    D.-C. Li, L. Dai, S. Huang et al., Chem. Phys. Lett. 316, 349 (2000)CrossRefGoogle Scholar
  23. 23.
    X.Y. Tao, X.B. Zhang, J.P. Cheng et al., Diamond Relat. Mater. 15, 1271 (2006)CrossRefGoogle Scholar
  24. 24.
    G.D. C.P.M.F. J. M. M., et al, Adv. Mater. 19, 1937 (2007)CrossRefGoogle Scholar
  25. 25.
    Y. Gao, Y. Bando, Nature 415, 599 (2002)CrossRefGoogle Scholar
  26. 26.
    X.-H. Wang, H. Orikasa, N. Inokuma et al., J. Mater. Chem. 17, 986 (2007)CrossRefGoogle Scholar
  27. 27.
    P. Ma, H. Xiao, C. Li et al., Mater. Today 18, 554 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Liu, H. Jiang, Y. Zhu et al., J. Mater. Chem. A 4, 1694 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Xin, Y. Hong, T. Huiteng et al., Adv. Funct. Mater. 24, 6516 (2014)CrossRefGoogle Scholar
  30. 30.
    Y.Q. Liu Man, Z. Li-Ping, H. Qin, Acta Phys. Sin. 63, 77302 (2014)Google Scholar
  31. 31.
    A. Singh, V. Kumar, Y. Kawazoe, Eur. Phys. J. 34, 295–298 (2005)Google Scholar
  32. 32.
    A.K. Singh, V. Kumar, T.M. Briere et al., Nano Lett. 2, 1243 (2002)CrossRefGoogle Scholar
  33. 33.
    Q. Wang, Y.J. Liu, J.X. Zhao, J. Mol. Model. 19, 1143 (2013)CrossRefGoogle Scholar
  34. 34.
    L. Jin, X. Zhao, X. Qian et al., J Coll. Interface Sci, 509, 245–253 (2017)CrossRefGoogle Scholar
  35. 35.
    H.-S. Kim, H. Lee, K.-S. Han et al., J. Phys. Chem. B 109, 8983 (2005)CrossRefGoogle Scholar
  36. 36.
    B. Sean, C. Steve, G. Robert et al., Nanotechnology 20, 235502 (2009)CrossRefGoogle Scholar
  37. 37.
    A.L. Dicks, J. Power Sources 156, 128 (2006)CrossRefGoogle Scholar
  38. 38.
    T. Pankewitz, W. Klopper, Chem. Phys. Lett. 498, 345 (2010)CrossRefGoogle Scholar
  39. 39.
    M.D. Ganji, M. Goodarzi, M. Nashtahosseini et al., Commun. Theor. Phys. 55, 365 (2011)CrossRefGoogle Scholar
  40. 40.
    M.D. Ellison, S.T. Morris, M.R. Sender et al., J. Phys. Chem. C 111, 18127 (2007)CrossRefGoogle Scholar
  41. 41.
    U. Burghaus, D. Bye, K. Cosert et al., Chem. Phys. Lett. 442, 344 (2007)CrossRefGoogle Scholar
  42. 42.
    Z.-R. Tang, Phys. B 405, 770 (2010)CrossRefGoogle Scholar
  43. 43.
    I.E. Wachs, Surf. Sci. 544, 1 (2003)CrossRefGoogle Scholar
  44. 44.
    C. Panja, N. Saliba, B.E. Koel, Surf. Sci. 395, 248 (1998)CrossRefGoogle Scholar
  45. 45.
    G. Paolo, B. Stefano, B. Nicola et al., J. Phys. 21, 395502 (2009)Google Scholar
  46. 46.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)CrossRefGoogle Scholar
  47. 47.
    D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)CrossRefGoogle Scholar
  48. 48.
    A. Ahmadi, J. Beheshtian, N.L. Hadipour, Physica E 43, 1717 (2011)CrossRefGoogle Scholar
  49. 49.
    M.V. Kharlamova, Phys. Usp. 56, 1047 (2013)CrossRefGoogle Scholar
  50. 50.
    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)CrossRefGoogle Scholar
  51. 51.
    Y. Xie, Y.-P. Huo, J.-M. Zhang, Appl. Surf. Sci. 258, 6391 (2012)CrossRefGoogle Scholar
  52. 52.
    S. Gowtham, H.S. Ralph, P. Ravindra et al., Nanotechnology 19, 125701 (2008)CrossRefGoogle Scholar
  53. 53.
    S. Reich, C. Thomsen, P. Ordejón, Phys. Rev. B 65, 155411 (2002)CrossRefGoogle Scholar
  54. 54.
    O. Gülseren, T. Yildirim, S. Ciraci, Phys. Rev. B 65, 153405 (2002)CrossRefGoogle Scholar
  55. 55.
    H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 64, 4382 (1995)CrossRefGoogle Scholar
  56. 56.
    J.P. Lu, Phys. Rev. Lett. 74, 1123 (1995)CrossRefGoogle Scholar
  57. 57.
    T.W. Odom, J.-L. Huang, P. Kim et al., Nature 391, 62 (1998)CrossRefGoogle Scholar
  58. 58.
    M.E. Flatte, IEEE Trans. Electron Devices 54, 907 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran

Personalised recommendations