Advertisement

A Facile Synthesis of Cellulose Acetate Functionalized Zinc Oxide Nanocomposite for Electrochemical Sensing of Cadmium ions

  • G. Padmalaya
  • B. S. Sreeja
  • P. Dinesh Kumar
  • S. Radha
  • V. Poornima
  • M. Arivanandan
  • Sujan Shrestha
  • T. S. Uma
Article
  • 64 Downloads

Abstract

In the present work, zinc oxide (ZnO) nanoparticles (NPs) were prepared using chemical co-precipitation technique. The prepared ZnO NPs were subjected to get modified directly using cellulose acetate (CA) which one of the important esters of cellulose. The possible application of CA functionalized ZnO nanocomposite (NC) has not been realized much in fabrication of electrochemical sensors. The as-prepared pure ZnO and CA functionalized ZnO NC were investigated using various analytical methods. The crystalline size was reduced due to the surface functionalization of CA on ZnO which was observed in XRD. With CA functionalization on ZnO, it was observed to be hexagonal rod shaped with reduced agglomeration in SEM images. The NC formation was further affirmed by IR analysis. The obtained material was employed as electrochemical sensor and was evaluated towards cadmium sensing property using cyclic voltammetry. In order to evaluate limit of detection (LOD) and sensitivity, square wave voltammetry was performed and showed that, under optimized conditions with linear detectable concentration range of 0.1–0.5 μM (R2 = 0.9937) LOD of 0.41 µM with significant sensitivity up to 3.11 μA/(μM). Based on the obtained results, NC was subjected to stability analysis and implemented on real time water samples.

Keywords

Cadmium Zinc oxide Nanocomposite Cellulose acetate Electrochemical sensor 

Notes

Acknowledgements

Authors provide sincere thanks to SSN trust for delivering financial support to carry out this work. Authors express their extended sole gratitude to SSN trust for awarding fellowship.

References

  1. 1.
    J. Iqbal, H.M. Shah, G. Akhter, J. Geochem. Explor. 25, 94 (2013)CrossRefGoogle Scholar
  2. 2.
    Z. Prokop, P. Cupr, V. Zlevorova-Zlamalikova, J. Komarek, L. Dusek, I. Holoubek, Environ. Res. 91, 119 (2003)CrossRefGoogle Scholar
  3. 3.
    J.K. Kresovich, M. Argos, E.M. Turyk, Environ. Res. 142, 25 (2015)CrossRefGoogle Scholar
  4. 4.
    T.S. Nawrot, A.J. Staessen, A.H. Roels, E. Munters, A. Cuypers, T. Richart, A. Ruttens, K. Smeets, H. Clijsters, J. Vangronsveld, Biometals 23, 769 (2010)CrossRefGoogle Scholar
  5. 5.
    I.M. Olsson, J. Eriksson, I. Öborn, S. Skerfving, A. Oskarsson, Ambio 34, 344 (2005)CrossRefGoogle Scholar
  6. 6.
    T. Kananke, J. Wansapala, A. Gunaratne, Environ. Monit. Assess. 188, 187 (2016)CrossRefGoogle Scholar
  7. 7.
    T. Kananke, J. Wansapala, A. Gunaratne, Am. J. Food Sci. Technol. 2, 139 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, S. Gao, X. Zang, J. Li, J. Ma, Anal. Chim. Acta 716, 112 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Ashoka, M.B. Peake, G. Bremner, K.J. Hageman, R.M. Reid, Anal. Chim. Acta 653, 191 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Golbedaghi, S. Jafari, M.R. Yaftian, R. Azadbakht, S. Salehzadeh, B. Jaleh, J. Iran. Chem. Soc. 9, 251 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Waheed, M. Mansha, N. Ullah, Trends Anal. Chem. 105, 37 (2018)CrossRefGoogle Scholar
  12. 12.
    W. Jin, P. Huang, F. Wu, L.H. Ma, Analyst 140, 3507 (2015)CrossRefGoogle Scholar
  13. 13.
    M.H. Hu, W.H. Huang, L.L. Suo, L.H. Zhou, L.F. Ma, H.F. Zhu, Anal. Methods 9, 5598 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Ping, J. Wu, Y.B. Ying, Chin. Sci. Bull. 57, 1781 (2012)CrossRefGoogle Scholar
  15. 15.
    Z. Wang, H. Hui Wang, Z. Zhang, X. Yang, G. Liu, Electrochim. Acta 120, 140 (2014)CrossRefGoogle Scholar
  16. 16.
    G. Zhao, Y. Yin, H. Wang, G. Liu, Z. Wang, Electrochim. Acta 220, 267 (2016)CrossRefGoogle Scholar
  17. 17.
    V.K. Gupta, M.L. Yola, N. Atar, Z. Ustundağ, A.O. Solake, Electrochim. Acta 113, 541 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Shrivastava, N. Jadon, R. Jain, Trends Anal. Chem. 82, 55 (2016)CrossRefGoogle Scholar
  19. 19.
    B. Zhang, J.D. Chen, H. Zhu, T.T. Yang, M.L. Zou, M. Zhang, M.L. Du, Electrochim. Acta 196, 422 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Guo, M.L. Seol, C. Gao, M.S. Kim, J.H. Ahn, Y.K. Choi, X.J. Huang, Electrochim. Acta 211, 998 (2016)CrossRefGoogle Scholar
  21. 21.
    R.X. Xu, X.Y. Yu, C. Gao, Y.J. Jiang, D.D. Han, J.H. Liu, X.J. Huang, Anal. Chim. Acta 790, 31 (2013)CrossRefGoogle Scholar
  22. 22.
    N.S. Arun Kumar, P.S. Adarakatti, S. Ashoka, P. Malingappa, J. Solid State Electrochem. 22, 1711 (2018)CrossRefGoogle Scholar
  23. 23.
    Q.X. Zhang, H. Wen, D. Peng, Q. Fu, X.J. Huang, J. Electroanal. Chem. 739, 89 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Wei, C. Gao, F.L. Meng, H.H. Li, L. Wang, J.H. Liu, X.J. Huang, J. Phys. Chem. C 116, 1034 (2011)CrossRefGoogle Scholar
  25. 25.
    G. Padmalaya, B.S. Sreeja, P. Senthil Kumar, M. Arivanandhan, Desalin. Water Treat. 97, 295 (2017)CrossRefGoogle Scholar
  26. 26.
    D. Selvakumar, A. Alsalme, A. Alghamdi, R. Jayavel, Mater. Lett. 191, 182 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Mahouche-Chergui, M. Guerrouache, B. Carbonnier, M.M. Chehimi, Colloids Surf. A 439, 43 (2013)CrossRefGoogle Scholar
  28. 28.
    E.I.R. Khamlich, D. Bouchta, M.B. Atia, M. Choukairi, R.T. Khalid, I. Raissouni, S. Tazi, A. Mohammadi, S. Soussi, K. Draoui, C. Faiza, M.L. Sefian, J. Solid State Electrochem. 22, 1983 (2018)CrossRefGoogle Scholar
  29. 29.
    K. Yamani, R. Berenguer, A. Benyoucef, E. Morallon, J. Therm. Anal. Calorim. (2018).  https://doi.org/10.1007/s10973-018-7347-z CrossRefGoogle Scholar
  30. 30.
    S. Daikh, F.Z. Zeggai, A. Bellil, A. Benyoucef, J. Phys. Chem. Solids 121, 78 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, J. Mol. Struct. 1150, 580 (2017)CrossRefGoogle Scholar
  32. 32.
    R. Sharma, F. Alam, A.K. Sharma, V. Dutta, S.K. Dhawan, J. Phys. Chem. C 2, 8142 (2014)Google Scholar
  33. 33.
    M. Sudha, S. Radha, S. Kirubaveni, R. Kiruthika, R. Govindaraj, N. Santhosh, Solid State Sci. 78, 30 (2018)CrossRefGoogle Scholar
  34. 34.
    E. Salih, M. Mekawy, R.Y.A. Hassan, I.M. El-Sherbiny, J. Nanostruct. Chem. 6, 137 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Groult, R.-C. Jesus, J. Pellico, V.L.V. Ana, R. Bhavesh, M. Zamai, E. Almarza, M.-P. Inés, E. Cantelar, P.M.A. Maria, F. Herranz, Bioconjug. Chem. 26, 153 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Sousa, A.R. Bras, H.I.M. Veiga, F.C. Ferreira, M.N. Pinho, N.T. Correia, M. Dionsio, J. Phys. Chem. B 114, 10939 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Ya, C. Jiang, T. Li, J. Liao, Y. Fan, Y. Wei, F. Yan, L. Xie, Sensors 17, 545 (2017)CrossRefGoogle Scholar
  38. 38.
    N. Olaru, G. Calin, L. Olaru, Ind. Eng. Chem. Res. 46, 17968 (2014)CrossRefGoogle Scholar
  39. 39.
    H. Sivaram, D. Selvakumar, A. Alsalme, A. Alswieleh, R. Jayavel, J. Alloys Compd. 731, 55 (2018)CrossRefGoogle Scholar
  40. 40.
    B. Panigrahy, M. Aslam, D. Bahadur, J. Phys. Chem. C 114, 11758 (2010)CrossRefGoogle Scholar
  41. 41.
    A. Umar, M.M. Rahman, M. Vaseem, Y.-B. Hahn, Electrochem. Commun. 11, 118 (2009)CrossRefGoogle Scholar
  42. 42.
    Z. Rafiq, R. Nazir, D. Shahwar, M.R. Shah, Shujat Al, J. Environ. Chem. Eng. 2, 642 (2014)CrossRefGoogle Scholar
  43. 43.
    X. Jin, J. Xu, X. Wang, Z. Xie, Z. Liu, B. Liang, D. Chen, G. Shen, RSC Adv. 4, 12640 (2014)CrossRefGoogle Scholar
  44. 44.
    J. Liqiang, W. Dejun, W. Baiqi, L. Shudan, X. Baifu, F. Honggang, S. Jiazhong, J. Mol. Catal. A 244, 193 (2006)CrossRefGoogle Scholar
  45. 45.
    X. Qi, X. Yao, S. Deng, T. Zhou, Q. Fu, J. Mater. Chem. A 2, 2240 (2014)CrossRefGoogle Scholar
  46. 46.
    K.-R. Agnieszka, E. Markiewicz, T. Jesionowski, J. Nanomater. (2012).  https://doi.org/10.1155/2012/656353 CrossRefGoogle Scholar
  47. 47.
    H. Bozetine, Q. Wang, A. Barras, M. Li, T. Hadjersi, S. Szunerits, R. Boukherroub, J. Colloid Interface Sci. 465, 286 (2016)CrossRefGoogle Scholar
  48. 48.
    R.-Al Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y.-Al Douri, Ceram. Int. 39, 2283 (2013)CrossRefGoogle Scholar
  49. 49.
    M. Chaoz, X. Ma, Russ. J. Electrochem. 15, 39 (2015)Google Scholar
  50. 50.
    G. Marino, F.B. Marcio, F.S.T. Marcos, T.G.C. Eder, Talanta 59, 1021 (2003)CrossRefGoogle Scholar
  51. 51.
    M. Velmurugan, S.-M. Chen, Nat. Sci. Rep. 7, 653 (2017)CrossRefGoogle Scholar
  52. 52.
    X. Xuan, M.F. Hossain, J.Y. Park, Nat. Sci. Rep. 6, 33125 (2017)CrossRefGoogle Scholar
  53. 53.
    Y. Wang, L. Wanga, W. Huanga, T. Zhanga, X. Hu, J.A. Perman, M. Shengqian, J. Mater. Chem. A 5, 8385 (2017)CrossRefGoogle Scholar
  54. 54.
    P.K. Sahoo, B. Panigrahy, S. Sahoo, A.K. Satpati, D. Li, D. Bahadur, Biosens. Bioelectron. 43, 293 (2013)CrossRefGoogle Scholar
  55. 55.
    H. Huang, T. Chen, X. Liu, H. Ma, Anal. Chim. Acta 852, 45 (2014)CrossRefGoogle Scholar
  56. 56.
    J. Morton, N. Havens, A. Mugweru, A.K. Wanekaya, Electroanalysis 21, 1597 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. Padmalaya
    • 1
  • B. S. Sreeja
    • 1
  • P. Dinesh Kumar
    • 2
  • S. Radha
    • 1
  • V. Poornima
    • 3
  • M. Arivanandan
    • 4
  • Sujan Shrestha
    • 5
  • T. S. Uma
    • 3
  1. 1.Department of Electronics and Communication EngineeringSSN College of EngineeringKalavakkamIndia
  2. 2.LabkartsChennaiIndia
  3. 3.Biological Materials LaboratoryCentral Leather Research InstituteChennaiIndia
  4. 4.Center for Nanoscience and TechnologyAnna UniversityChennaiIndia
  5. 5.Application EngineerAdmiral Instruments, LLCPhoenixUSA

Personalised recommendations