Synthesis of Novel Magnetic NiFe2O4 Nanocomposite Grafted Chitosan and the Adsorption Mechanism of Cr(VI)

  • Bing Zhang
  • Yunhai WuEmail author
  • Yiang Fan


This study prepared chitosan/NiFe2O4 (CNF) nanocomposites for the removal of Cr(VI) ions. The materials were characterized by various analytic methods including scanning electron microscopy, energy dispersive spectrometer, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and zeta potential. The adsorption performance of the nanocomposites was investigated and optimized with Cr(VI) as a target metal ion under various experimental conditions (contact time, adsorbent dosage, pH value, initial metal ion concentration). The results indicate that CNF exhibited better adsorption performance in comparison to original NiFe2O4 nanoparticles. Furthermore, the optimum adsorption capacity of CNF could be obtained within 120 min of contact time under pH 2.0 and 30 °C using 0.1 g CNF. Moreover, the experimental equilibrium data matched the Freundlich isotherm model under the studied concentrations for a specific temperature. The theoretical maximum adsorption capacity calculated with the Langmuir isotherm model reached 31.523 mg/g at 30 °C. Additionally, the adsorption kinetic data was found to be accorded well with the pseudo-second order kinetic model. Intraparticle diffusion was found to be one of the rate-limiting steps. Moreover, the metal-loaded adsorbents with good magnetic performance can easily be reclaimed from aqueous solution by magnetic separation, thus achieving solid–liquid separation, which suggests CNF as a potential recyclable adsorbent for hazardous Cr(VI) ions in waste-water.


Adsorption Magnetic separation Cr(VI) ions removal Magnetic nanoparticles Chitosan 



The authors would like to express the deepest gratitude to the teachers, friends, and family who supported with useful instructions and kind encouragements.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10904_2018_987_MOESM1_ESM.docx (854 kb)
Supplementary material 1 (DOCX 854 KB)


  1. 1.
    U. Habiba, A.M. Afifi, A. Salleh, B.C. Ang, J. Hazard. Mater. 322, 182 (2017)CrossRefGoogle Scholar
  2. 2.
    Q. Liu, Q. Liu, B. Liu, T. Hu, W. Liu, J. Yao, J. Hazard. Mater. 352, 27 (2018)CrossRefGoogle Scholar
  3. 3.
    M.M. Matlock, B.S. Howerton, D.A. Atwood, Water Res. 36, 4757 (2002)CrossRefGoogle Scholar
  4. 4.
    J. Gao, S.P. Sun, W.P. Zhu, T.S. Chung, Water Res. 63, 252 (2014)CrossRefGoogle Scholar
  5. 5.
    M.A. Farajzadeh, A.B. Monji, Sep. Purif. Technol. 38, 197 (2004)CrossRefGoogle Scholar
  6. 6.
    P.E. Franco, M.T. Veit, C.E. Borba, G.D.C. Gonçalves, M.R. Fagundes-Klen, R. Bergamasco, E.A.D. Silva, P.Y.R. Suzaki, Chem. Eng. J. 221, 426 (2013)CrossRefGoogle Scholar
  7. 7.
    A.E. Samrani, B.S. Lartiges, F. Villiéras, Water Res. 42, 951 (2008)CrossRefGoogle Scholar
  8. 8.
    B.C. Ahmed, N.S. Bhadrinarayana, N. Anantharaman, M.S.B. Km. J. Hazard. Mater. 152, 71 (2008)CrossRefGoogle Scholar
  9. 9.
    J.R. Dodson, H.L. Parker, A. Munoz Garcia, A. Hicken, K. Asemave, T.J. Farmer, H. He, J.H. Clark, A.J. Hunt, Green Chem. 17, 1951 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Li, W. Cui, L. Liu, R. Zong, W. Yao, Y. Liang, Y. Zhu, Appl. Catal. B 199, 412 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Babel, T.A. Kurniawan. J. Hazard. Mater. 97, 219 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Zehhaf, A. Benyoucef, C. Quijada, S. Taleb, E. Morallón, Int. J. Environ. Sci. Technol. 12, 595 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Zehhaf, A. Benyoucef, R. Berenguer, C. Quijada, S. Taleb, E. Morallon, J. Therm. Anal. Calorim. 110, 1069 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Mekhloufi, A. Zehhaf, A. Benyoucef, C. Quijada, E. Morallon, Environ. Monit. Assess. 185, 10365 (2013)CrossRefGoogle Scholar
  15. 15.
    V. Srivastava, C.H. Weng, V.K. Singh, Y.C. Sharma, J. Chem. Eng. Data 56, 1414 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Zhang, P. Hou, Acta Chim. Sin. 67, 1336 (2009)Google Scholar
  17. 17.
    K. Ahalya, N. Suriyanarayanan, V. Ranjithkumar, J. Magn. Magn. Mater. 372, 208 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Chem. Eng. J. 184, 132 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Prog. Polym. Sci. 36, 981 (2011)CrossRefGoogle Scholar
  20. 20.
    C. Gerente, V.K.C. Lee, P.L. Cloirec, G. McKay, Crit. Rev. Environ. Sci. Technol. 37, 41 (2007)CrossRefGoogle Scholar
  21. 21.
    B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpää, Chem. Eng. J. 259, 1 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Zhu, J. Hu, J. Wang, J. Hazard. Mater. 221–222, 155 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.X. Zhang, X.Y. Yu, Z. Jin, Y. Jia, W.H. Xu, T. Luo, B.J. Zhu, J.H. Liu, X.J. Huang, J. Mater. Chem. 21, 16550 (2011)CrossRefGoogle Scholar
  24. 24.
    O. Philippovaa, V. Molchanov, A. Khokhlov, Eur. Polym. J. 47, 542 (2011)CrossRefGoogle Scholar
  25. 25.
    H.Y. Zhu, R. Jiang, L. Xiao, G.M. Zeng, Bioresour. Technol. 101, 5063 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Meng, D. Chen, Y. Sun, D. Jiao, D. Zeng, Z. Liu, Appl. Surf. Sci. 324, 745 (2015)CrossRefGoogle Scholar
  27. 27.
    R. Qin, F. Li, M. Chen, J. Wei, Appl. Surf. Sci. 256, 27 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Ignat, P. Samoila, C. Cojocaru, L. Sacarescu, V. Harabagiu, Chem. Eng. Commun. 203, (2016)Google Scholar
  29. 29.
    Y. Ren, H.A. Abbood, F. He, H. Peng, K. Huang, Chem. Eng. J. 226, 300 (2013)CrossRefGoogle Scholar
  30. 30.
    X.F. Zheng, Q. Lian, J. Dispers. Sci. Technol. 36, 245 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Ramezani, A. Ghazitabar, S.K. Sadrnezhaad. Synthesis and characterization of chitosan-coating of NiFe2O4 nanoparticles for biomedical applications. in International Conference on Nanostructures. 2016Google Scholar
  32. 32.
    J. Singh, M. Srivastava, P. Kalita, B.D. Malhotra, Process Biochem. 47, 2189 (2012)CrossRefGoogle Scholar
  33. 33.
    L. Zhou, L. Ji, P.C. Ma, Y. Shao, H. Zhang, W. Gao, Y. Li, J. Hazard. Mater. 265, 104 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Liu, Q. Hu, Z. Fang, X. Zhang, B. Zhang, Langmuir 25, 3 (2009)CrossRefGoogle Scholar
  35. 35.
    R.A. Latour, J. Biomed. Mater. Res. Part A 103, 949 (2015)CrossRefGoogle Scholar
  36. 36.
    W.S.W. Ngah, S. Fatinathan, N.A. Yosop, Desalination. 272, 293 (2011)CrossRefGoogle Scholar
  37. 37.
    K.Y. Shin, J.Y. Hong, J. Jang, J. Hazard. Mater. 190, 36 (2011)CrossRefGoogle Scholar
  38. 38.
    X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, J. Gao, Carbon. 50, 4856 (2012)CrossRefGoogle Scholar
  39. 39.
    Y.S. Ho, G. Mckay, Process. Biochem. 34, 451 (1999)CrossRefGoogle Scholar
  40. 40.
    R.R. Bhatt, B.A. Shah, Arab. J. Chem. 8, 414 (2015)CrossRefGoogle Scholar
  41. 41.
    F. Zhu, L. Li, J. Xing, J. Hazard. Mater. 321, 103 (2017)CrossRefGoogle Scholar
  42. 42.
    W.S.W. Ngah, S. Fatinathan, Chem. Eng. J. 143, 62 (2008)CrossRefGoogle Scholar
  43. 43.
    X.Y. Huang, X.Y. Mao, H.T. Bu, X.Y. Yu, G.B. Jiang, M.H. Zeng, Carbohydr. Res. 346, 1232 (2011)CrossRefGoogle Scholar
  44. 44.
    Z. Lei, X. Pang, N. Li, L. Lin, Y. Li, J. Mater. Process. Technol. 209, 3218 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Wang, F. Ren, B. Jia, X. Liu, Solid State Commun. 150, 1141 (2010)CrossRefGoogle Scholar
  46. 46.
    J.H. Wang, S.R. Zheng, Y. Shao, J.L. Liu, Z.Y. Xu, D.Q. Zhu, J. Colloid Interface Sci. 349, 293 (2010)CrossRefGoogle Scholar
  47. 47.
    Y. Salameh, A.B. Albadarin, S. Allen, G. Walker, M.N.M. Ahmad, Chem. Eng. J. 259, 663 (2015)CrossRefGoogle Scholar
  48. 48.
    M.E. Argun, D. Güclü, M. Karatas, J. Ind. Eng. Chem. 20, 1079 (2014)CrossRefGoogle Scholar
  49. 49.
    F.F. Liu, J. Zhao, S. Wang, B. Xing, Environ. Pollut. 210, 85 (2016)CrossRefGoogle Scholar
  50. 50.
    N. Tewari, P. Vasudevan, B.K. Guha, Biochem. Eng. J. 23, 185 (2005)CrossRefGoogle Scholar
  51. 51.
    M.W. Anthonsen, K.M. Varum, A.M. Hermansson, O. Smidsrod, D.A. Brant, Carbohydr. Polym. 25, 13 (1994)CrossRefGoogle Scholar
  52. 52.
    M. Ghaedi, M.D. Ghazanfarkhani, S. Khodadoust, N. Sohrabi, M. Oftade, J. Ind. Eng. Chem. 20, 2548 (2014)CrossRefGoogle Scholar
  53. 53.
    N.M. Mahmoodi, R. Salehi, M. Arami, Desalination 272, 187 (2011)CrossRefGoogle Scholar
  54. 54.
    M. Ghasemi, N. Ghasemi, G. Zahedi, S.R.W. Alwi, M. Goodarzi, H. Javadian, Int. J. Environ. Sci. Technol. 11, 1835 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of EnvironmentHohai UniversityNanjingChina
  2. 2.Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of EducationHohai UniversityNanjingChina
  3. 3.Department of Civil EngineeringThe University of Hong KongHong Kong Special Administrative RegionChina

Personalised recommendations