Spectroscopic and Electrochemical Features of Glucose Oxidase Incorporation into Polyaniline-Cobaltous Oxalate Nano-complex

  • Ting Mei Ma
  • Han ZengEmail author
  • Shu Xian Zhao
  • Wen Shan Huo


Nano-complex as enzyme carrier was prepared via hybridization of nano-scale cobaltous oxalate with conductive polymer: polyaniline. Spectrometric means and electrochemical technique were proposed to explore the influence of interaction between nano-composite and redox protein on structural features, dynamics of electron shuttle and catalysis of immobilized enzyme. Results indicated that collaboration of π–π stacking effect as well as the complexation of metal ions in nano-composite with cofactors in enzyme molecule could lead to the firm linkage of glucose oxidase to the matrix of nano-composite. The ligation would cause orientated attachment of enzyme molecules onto the surface of nano-complex. Synergistic effect would not only enhance the enzyme loading capacity of carrier but also facilitate the direct electrochemistry of tethered enzyme molecules with intact structure and configuration of cofactor. However the complexation would cripple the enzymatic catalysis in electro-oxidation of glucose in spite of high affinity to glucose for glucose oxidase integration into nano-composite.

Graphical Abstract

Coordination of metal ions within nano-composite with cofactor of glucose oxidase (GOx) would lead to formation of composite with crippled emission fluorescence and hinder the electro-oxidation of glucose.


Nano-complex Polyaniline Nano-scale CoC2O4 Coordination Glucose oxidase Spectroscopic feature Enzymatic oxidation of glucose 



The study was financially supported by the National Natural Science Foundation of China (Nos. 31560249, 21363024).


  1. 1.
    R.P. Ramasamy, H.R. Luckarift, D.M. Ivnitski, P.B. Atanassov, G.R. Johnson, Chem. Commun. 46, 6045 (2010)CrossRefGoogle Scholar
  2. 2.
    E. Nazaruk, K. Sadowska, J.F. Biernat, J. Rogalski, G. Ginalska, R. Bilewicz, Anal. Bioanal. Chem. 398, 1651 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Min, J.H. Ryu, Y.J. Yoo, Biotechnol. Bioprocess. Eng. 15, 371 (2010)CrossRefGoogle Scholar
  4. 4.
    D. Wen, X.L. Xu, S.J. Dong, Energy Environ. Sci. 4, 1358 (2011)CrossRefGoogle Scholar
  5. 5.
    M.A. Rahman, H.B. Noh, Y.B. Shim, Anal. Chem. 80, 8020 (2008)CrossRefGoogle Scholar
  6. 6.
    R.D. Milton, F. Giroud, A.E. Thumser, S.D. Minteer, R.C.T. Slade, Chem. Commun. 50, 94 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Yang, H. Zeng, W.S. Huo, Y.H. Zhang, J. Inorg. Organomet. Polym. 27, 201 (2017)CrossRefGoogle Scholar
  8. 8.
    E. Mehmeti, D.M. Stanković, S. Chaiyo, J. Zavasnik, K. Žagar, K. Kalcher, Microchim. Acta 184, 1127 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Shiba, J. Inoue, D. Kato, K. Yoshioka, O. Niwa, Electrochemistry 83, 332 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Li, L. Zhang, L. Su, T. Ohsaka, L. Mao, Fuel Cells 9, 85 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Jariwala, S. Phul, R. Nagpal, S. Goel, B. Krishnamurthy, J. Electroanal. Chem. 801, 354 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Brocato, C. Lau, P. Atanassov, Electrochim. Acta 61, 44 (2012)CrossRefGoogle Scholar
  13. 13.
    K.M. Manesh, P. Santhosh, A.I. Gopalan, K.P. Lee, Electroanalysis 18, 1564 (2006)CrossRefGoogle Scholar
  14. 14.
    Z.Y. Cao, C.M. Yang, H.Y. Li, Y.B. Xiang, Chin. J. Appl. Chem. 26, 1264 (2009) (In Chinese)Google Scholar
  15. 15.
    Y. Yang, W.S. Huo, Z. Zhou, Q. Zhang, H. Zeng, Chin. J. Inorg. Chem. 32, 2117 (2016) (In Chinese)Google Scholar
  16. 16.
    S. Shleev, A. Jarosz-Wilkolazka, A. Khalunina, O. Morozova, A. Yaropolov, T. Ruzgas, L. Gorton, Bioelectrochemistry 67, 115 (2005)CrossRefGoogle Scholar
  17. 17.
    Y.F. Zhu, S. Kaskel, J.L. Shi, T. Wage, K.-H.V. Pée, Chem. Mater. 19, 6408 (2007)CrossRefGoogle Scholar
  18. 18.
    Y. Yang, H. Zeng, Q. Zhang, X. Bai, C. Liu, Y.H. Zhang, Chem. Phys. Lett. 658, 259 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Mao, B.F. Cai, B. Zhao, Z.W. Wang, Chin. J. Appl. Chem. 26, 1332 (2009) (In Chinese)Google Scholar
  20. 20.
    H.Y. Zhao, H.M. Zhou, J.X. Zhang, W. Zheng, Y.F. Zheng, Biosens. Bioelectron. 25, 463 (2009)CrossRefGoogle Scholar
  21. 21.
    H.J. Qiu, C.X. Xu, X.R. Huang, Y. Ding, Y.B. Qu, P.J. Gao, J. Phys. Chem. C 113, 2521 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Zeng, Y. Yang, S.Y. Zhao, Y.H. Zhang, J. Inorg. Organomet. Polym. 27, 1162 (2017)CrossRefGoogle Scholar
  23. 23.
    Y.H. Zhang, Y. Yang, H. Zeng, W.S. Huo, J. Inorg. Organomet. Polym. 27, S189 (2017)CrossRefGoogle Scholar
  24. 24.
    I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G.L. Tao, J. Am. Chem. Soc. 118, 10321 (1996)CrossRefGoogle Scholar
  25. 25.
    Y.Z. Xian, Y. Xian, L.H. Zhou, F.H. Wu, Y. Ling, L.T. Jin, Electrochem. Commun. 9, 142 (2007)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, C.S. Zhou, J.J. Luo, Y.Y. Long, C.M. Wang, T.T. Yu, D. Xiao, J. Mater. Chem. B 3, 1116 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Liu, M.K. Wang, F. Zhao, Z.A. Xu, S.J. Dong, Biosens. Bioelectron 21, 984 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ting Mei Ma
    • 1
  • Han Zeng
    • 1
    Email author
  • Shu Xian Zhao
    • 1
  • Wen Shan Huo
    • 1
  1. 1.Engineering Centre of Electrochemistry, Chemistry and Chemical Engineering AcademyXinJiang Normal UniversityÜrümqiPeople’s Republic of China

Personalised recommendations