Weakly Radio-Frequency Negative Permittivity of Poly(vinylidene fluoride)/Ti3SiC2 MAX Phase Metacomposites

  • Yao LiuEmail author
  • Yunpeng Qu
  • Jiahao Xin
  • Zezhong Wang
  • Guohua Fan
  • Peitao Xie
  • Kai SunEmail author


While metal or carbon materials served as conductive phase in fabricating metamaterials or metacomposites have been widely investigated, MAX phases could provide alternative route. In this paper, Poly(vinylidene fluoride)/Ti3SiC2 MAX phase metacomposites with different Ti3SiC2 content were fabricated. Electrical and dielectric properties of metacomposites were analyzed. Percolating phenomenon was observed over the percolation threshold (fc). Below fc, ac conductivity spectra were explained by Jonscher’s power law, indicating hopping conduction behavior. Above fc, ac conductivity of composites follows Drude model, suggesting the metal-like conductive behavior. Weakly negative permittivity behavior was observed and explained by Lorentz and Drude model, suggesting the combinative contribution of induced electric dipole resonance and low-frequency plasmonic oscillation. The impedance performance of composites were also clarified by Nyquist plots and equivalent circuit analysis, manifesting the capacitive-inductive shift of composites. This work presented a novel route to metacomposites with weakly negative permittivity which greatly benefitted the practical applications of MAX phase in metacomposites.


Negative permittivity Metacomposites MAX phase Metamaterials PVDF 



This study was financially supported by the National Natural Science Foundation of China [Grant Nos. 51771104 and 51402170].The author Yunpeng Qu thanks Murakami Haruki, Franz Kafka and Higashino Keigo whose novels comforted the author’s soul. The author Yunpeng Qu also thanks Prof. Shaohua Lin from Ocean University of China (OUC) whose replying letter encouraged Qu to work for the graduate degree.

Supplementary material

10904_2018_983_MOESM1_ESM.docx (349 kb)
Supplementary material 1 (DOCX 349 KB)


  1. 1.
    D.J. Bergman, D. Stroud, Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 147–269 (1992)CrossRefGoogle Scholar
  2. 2.
    D.R. Smith, J.B. Pendry, M.C. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)CrossRefGoogle Scholar
  3. 3.
    B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101–254103 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Jahani, Z. Jacob, All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016)CrossRefGoogle Scholar
  5. 5.
    N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A. Dalvit, H.T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013)CrossRefGoogle Scholar
  6. 6.
    W.J. Padilla, D.N. Basov, D.R. Smith, Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)CrossRefGoogle Scholar
  8. 8.
    V.M. Shalaev, T.A. Klar, V.P. Drachev, A.V. Kildishev, Optical negative-index metamaterials: from low to no loss. Nat. Photon. 1, 41–48 (2006)CrossRefGoogle Scholar
  9. 9.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, Metamaterials for perpetual cooling at large scales. Science 355, 1023–1024 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Chen, X. Wang, Z. Zhang, K. Sun, C. Cheng, F. Dang, Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency. Mater. Des. 97, 454–458 (2016)CrossRefGoogle Scholar
  12. 12.
    N.D. Gavrilova, V.K. Novik, A.V. Vorobyev, I.A. Malyshkina, Negative dielectric permittivity of poly(acrylic acid) pressed pellets. J. Non-Cryst. Solids 452, 1–8 (2016)CrossRefGoogle Scholar
  13. 13.
    Z. Zhang, R. Fan, Z. Shi, S. Pan, K. Yan, K. Sun, J. Zhang, X. Liu, X.L. Wang, S.X. Dou, Tunable negative permittivity behavior and conductor–insulator transition in dual composites prepared by selective reduction reaction. J. Mater. Chem. C 1, 79–85 (2013)CrossRefGoogle Scholar
  14. 14.
    Z. Zhang, K. Sun, Y. Liu, Z. Kuang, S. Sun, X. Ji, The negative permittivity behavior and magnetic property of FeNi/Al2O3 composites in radio frequency region. Ceram. Int. 42, 19063–19065 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Chen, R.H. Fan, M. Gao, S.B. Pan, M.X. Yu, Z.D. Zhang, Negative permittivity behavior in Fe50Ni50/Al2O3 magnetic composite near percolation threshold. J. Magn. Magn. Mater. 381, 105–108 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Chen, M. Gao, F. Dang, N. Wang, B. Zhang, S. Pan, Tunable negative permittivity and permeability in FeNiMo/Al2O3 composites prepared by hot-pressing sintering. Ceram. Int. 42, 6444–6449 (2016)CrossRefGoogle Scholar
  17. 17.
    Q. Hou, K.L. Yan, R.H. Fan, Z.D. Zhang, M. Chen, K. Sun, C.B. Cheng, Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites. RSC Adv. 5, 9472–9475 (2015)CrossRefGoogle Scholar
  18. 18.
    X.A. Wang, Z.C. Shi, M. Chen, R.H. Fan, K.L. Yan, K. Sun, S.B. Pan, M.X. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J. Am. Ceram. Soc. 97, 3223–3229 (2014)CrossRefGoogle Scholar
  19. 19.
    M.A. Piechowiak, J. Henon, O. Durand-Panteix, G. Etchegoyen, V. Coudert, P. Marchet, F. Rossignol, Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method. J. Eur. Ceram. Soc. 34, 1063–1072 (2014)CrossRefGoogle Scholar
  20. 20.
    L.L. Zheng, L.C. Sun, M.S. Li, Y.C. Zhou, Improving the high-temperature oxidation resistance of Ti3(SiAl)C2 by Nb-doping. J. Am. Ceram. Soc. 94, 3579–3586 (2011)CrossRefGoogle Scholar
  21. 21.
    J.L. Smialek, Environmental resistance of a Ti2AlC-type MAX phase in a high pressure burner rig. J. Eur. Ceram. Soc. 37, 23–34 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Yin, H. Wu, K. Sun et al., Fabrication of graphene network in alumina ceramics with adjustable negative permittivity by spark plasma sintering. J. Phys. Chem. C 122, 1791–1799 (2018)CrossRefGoogle Scholar
  23. 23.
    R. Yin, Y. Zhang, W. Zhao et al., Graphene platelets/aluminium nitride metacomposites with double percolation property of thermal and electrical conductivity. J. Eur. Ceram. Soc. 38, 4701–4706 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Wu, R. Yin, Y. Zhang et al., Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites. J. Phys. Chem. C 121, 12037–12045 (2017)CrossRefGoogle Scholar
  25. 25.
    H. Wu, R. Yin, L. Qian et al., Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater. Des. 117, 18–23 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Wu, Y. Zhang, R. Yin et al., Magnetic negative permittivity with dielectric resonance in random Fe3O4@graphene-phenolic resin composites. Adv. Compos. Hybrid Mater. 1, 168–176 (2018)CrossRefGoogle Scholar
  27. 27.
    H. Wu, Y. Qi, Z. Wang et al., Low percolation threshold in flexible graphene/acrylic polyurethane composites with tunable negative permittivity. Compos. Sci. Technol. 151, 79–84 (2017)CrossRefGoogle Scholar
  28. 28.
    P. Xie, Z. Wang, Z. Zhang et al., Silica microspheres templated self-assembly of three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J. Mater. Chem. C 6, 5239–5249 (2018)CrossRefGoogle Scholar
  29. 29.
    P. Xie, K. Sun, Z. Wang et al., Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J. Alloy. Compd. 725, 1259–1263 (2017)CrossRefGoogle Scholar
  30. 30.
    Z. Guo, P. Xie, F. Dang et al., Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6, 8812–8822 (2018)CrossRefGoogle Scholar
  31. 31.
    P. Xie, W. Sun, Y. Liu et al., Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129, 598–606 (2018)CrossRefGoogle Scholar
  32. 32.
    Z. Zhao, R. Guan, J. Zhang, Z. Zhao, P. Bai, Effects of process parameters of semisolid stirring on microstructure of Mg-3Sn-1Mn-3SiC (wt%) strip processed by rheo-rolling. Acta Metall. Sin. 30, 66–72 (2017)CrossRefGoogle Scholar
  33. 33.
    Z. Zhao, P. Bai, R. Guan, V. Murugadoss, H. Liu, X. Wang, Z. Guo, Microstructural evolution and mechanical strengthening mechanism of Mg-3Sn-1Mn-1La alloy after heat treatments. Mater. Sci. Eng. A 734, 200–209 (2018)CrossRefGoogle Scholar
  34. 34.
    T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018)CrossRefGoogle Scholar
  35. 35.
    Z. Sun et al., Experimental and simulation understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19, 3288–3298 (2017)CrossRefGoogle Scholar
  36. 36.
    L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, H651–H656 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Zhang, M. Qin, W. Yu, Q. Zhang, H. Xie, Z. Sun, Q. Shao, X. Guo, L. Hao, Y. Zheng, Z. Guo, Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 164, H1086–H1090 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, L. Qian, W. Zhao, X. Li, X. Huang, X. Mai, Z. Wang, Q. Shao, X. Yan, Z. Guo, Highly efficient Fe-N-C nanoparticles modified porous graphene composites for oxygen reduction reaction. J. Electrochem. Soc. 165, H510–H516 (2018)CrossRefGoogle Scholar
  39. 39.
    B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, Z. Guo, Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 46, 15769–15777 (2017)CrossRefGoogle Scholar
  40. 40.
    X. Lou, C. Lin, Q. Luo, J. Zhao, B. Wang, J. Li, Q. Shao, X. Guo, N. Wang, Z. Guo, Crystal-structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem 4, 3171–3180 (2017)CrossRefGoogle Scholar
  41. 41.
    C. Lin, H. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, J. Li, N. Wang, Z. Guo, Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim. Acta 260, 65–72 (2018)CrossRefGoogle Scholar
  42. 42.
    Q. Hou, J. Ren, H. Chen, P. Yang, Q. Shao, M. Zhao, X. Zhao, H. He, N. Wang, Q. Luo, Z. Guo, Synergistic hematite-fullerene electron extracting layers for improved efficiency and stability in perovskite solar cells. ChemElectroChem 5, 726–731 (2018)CrossRefGoogle Scholar
  43. 43.
    Y. Li, T. Jing, G. Xu, J. Tian, M. Dong, Q. Shao, B. Wang, Z. Wang, Y. Zheng, C. Yang, Z. Guo, 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 149, 13–22 (2018)CrossRefGoogle Scholar
  44. 44.
    C. Wang, M. Zhao, J. Li, J. Yu, S. Sun, S. Ge, X. Guo, F. Xie, B. Jiang, E. Wujcik, Y. Huang, N. Wang, Z. Guo, Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131, 263–271 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Zhao, L. Wu, C. Zhan, Q. Shao, Z. Guo, L. Zhang, Overview of polymer nanocomposites: computer simulation understanding of physical properties. Polymer 133, 272–287 (2017)CrossRefGoogle Scholar
  46. 46.
    X. Cui, G. Zhu, Y. Pan, Q. Shao, C. Zhao, M. Dong, Y. Zhang, Z. Guo, Polydimethylsiloxane-titania nanocomposite coating: fabrication and corrosion resistance. Polymer 138, 203–210 (2018)CrossRefGoogle Scholar
  47. 47.
    C. Wang, B. Mo, Z. He, C.X. Zhao, L. Zhang, Q. Shao, X. Guo, E. Wujcik, Z. Guo, Hydroxide ions transportation in polynorbornene anion exchange membrane. Polymer 138, 363–368 (2018)CrossRefGoogle Scholar
  48. 48.
    Y. He, S. Yang, H. Liu et al., Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties. J. Colloid Interface Sci. 517, 40–51 (2018)CrossRefGoogle Scholar
  49. 49.
    Z. Wu, S. Gao, L. Chen, D. Jiang, Q. Shao, B. Zhang, Z. Zhai, C. Wang, M. Zhao, Y. Ma, X. Zhang, L. Weng, M. Zhang, Z. Guo, Electrically insulated epoxy nanocomposites reinforced with synergistic core-shell SiO2@MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 218, 1700357 (2017)CrossRefGoogle Scholar
  50. 50.
    Y. Zheng, Y. Zheng, S. Yang, Z. Guo, T. Zhang, H. Song, Q. Shao, Esterification synthesis of ethyl oleate catalyzed by Brønsted acid-surfactant-combined ionic liquid. Green Chem. Lett. Rev. 10, 202 (2017)CrossRefGoogle Scholar
  51. 51.
    Y. Zheng, Y. Zheng, Z. Wang, Y. Cao, Q. Shao, Z. Guo, Sodium dodecyl benzene sulfonate-catalyzed reaction for aromatic aldehydes with 1-phenyl-3-methyl-5-pyrazolone in aqueous media. Green Chem. Lett. Rev. 11, 217–223 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinanChina
  2. 2.College of Ocean Science and EngineeringShanghai Maritime UniversityShanghaiChina
  3. 3.School of MinesChina University of Mining and TechnologyXuzhouChina

Personalised recommendations