A Tunable Template-Assisted Hydrothermal Synthesis of Hydroxysodalite Zeolite Nanoparticles Using Various Aliphatic Organic Acids for the Removal of Zinc(II) Ions from Aqueous Media

  • Ehab A. AbdelrahmanEmail author
  • Dina A. Tolan
  • Mostafa Y. Nassar


Hydroxysodalite zeolite nanoparticles with different crystallite sizes (37.61–64.88 nm) were synthesized using a hydrothermal method in the absence and presence of low-cost aliphatic organic acids as templates. The templates used were oxalic acid dihydrate, tartaric acid, citric acid monohydrate, succinic acid, maleic acid, and ethylenediaminetetraacetic acid (EDTA). The synthesized nanoparticles were characterized using HR-TEM, FE-SEM, FT-IR, and XRD techniques. The hydroxysodalite zeolite synthesized using ethylenediaminetetraacetic acid (EDTA) has the smallest crystallite size (37.61 nm) whereas the template free one has the largest crystallite size (64.88 nm). The synthesized nanoparticles could be effectively applied to purify polluted water from the zinc(II) ions, and the maximum adsorption capacity was 8.53 mg/g. Kinetic study displayed that the adsorption process of zinc(II) ions obeyed pseudo-second-order, intra-particle diffusion, liquid film diffusion, and pore diffusion models whereas the rate determining step of the adsorption is only controlled by the pore diffusion model. In addition, equilibrium study showed that the adsorption process fitted well with the Langmuir isotherm model compared to  the Freundlich isotherm model. Besides, thermodynamic study showed that the adsorption process is exothermic, spontaneous, and chemisorption. Moreover, desorption and reusability study revealed that there is a slight decrease in both of the % removal and adsorption capacity of the hydroxysodalite adsorbent with progressing five cycles. Hence, we can infer that this new hydroxysodalite adsorbent can possibly be utilized repeatedly without sacrificing its adsorption capacity towards zinc(II) ions.


Hydrothermal method Hydroxysodalite nanoparticles Organic templates Zinc(II) ions Adsorption 



The authors sincerely thank Dr “Mai Maize” for helping them in performing some analysis such as FE-SEM, EDX, and XPS in Japan.


  1. 1.
    S.Y. Lee, H.J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution. J. Environ. Manage. 209, 382–392 (2018)CrossRefGoogle Scholar
  2. 2.
    P.A. Kobielska, A.J. Howarth, O.K. Farha, S. Nayak, Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 358, 92–107 (2018)CrossRefGoogle Scholar
  3. 3.
    C. Sarkar, J.K. Basu, A.N. Samanta, Synthesis of mesoporous geopolymeric powder from LD slag as superior adsorbent for Zinc(II) removal. Adv. Powder Technol. 29, 1142–1152 (2018)CrossRefGoogle Scholar
  4. 4.
    N. Ghasemi, M. Ghasemi, S. Moazeni, P. Ghasemi, N.S. Alharbi, V.K. Gupta, S. Agarwal, I.V. Burakova, A.G. Tkachev, Zn(II) removal by amino-functionalized magnetic nanoparticles: kinetics, isotherm, and thermodynamic aspects of adsorption. J. Ind. Eng. Chem. 62, 302–310 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Mnasri Ghnimi, N. Frini-Srasra, A comparison of single and mixed pillared clays for zinc and chromium cations removal. Appl. Clay Sci. 158, 150–157 (2018)CrossRefGoogle Scholar
  6. 6.
    İ Kara, D. Yilmazer, S.T. Akar, Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions. Appl. Clay Sci. 139, 54–63 (2017)CrossRefGoogle Scholar
  7. 7.
    P. Cristian, P. Violeta, R. Anita-Laura, I. Raluca, E. Alexandrescu, S. Andrei, I.-E. Daniela, M.A. Raluca, M. Cristina, C.A. Ioana, Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica. J. Water Process Eng. 8, 1–10 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Ramezanzadeh, M. Asghari, B. Ramezanzadeh, G. Bahlakeh, Fabrication of an efficient system for Zn ions removal from industrial wastewater based on graphene oxide nanosheets decorated with highly crystalline polyaniline nanofibers (GO-PANI): experimental and ab initio quantum mechanics approaches. Chem. Eng. J. 337, 385–397 (2018)CrossRefGoogle Scholar
  9. 9.
    O. Abdelwahab, N.K. Amin, E.S.Z. El-Ashtoukhy, Removal of zinc ions from aqueous solution using a cation exchange resin. Chem. Eng. Res. Des. 91, 165–173 (2013)CrossRefGoogle Scholar
  10. 10.
    P.E. Franco, M.T. Veit, C.E. Borba, G.d.C. Gonçalves, M.R. Fagundes-Klen, R. Bergamasco, E.A. da Silva, P.Y.R. Suzaki, Nickel(II) and zinc(II) removal using Amberlite IR-120 resin: ion exchange equilibrium and kinetics. Chem. Eng. J. 221, 426–435 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Adeli, Y. Yamini, M. Faraji, Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab. J. Chem. 10, S514–S521 (2017)CrossRefGoogle Scholar
  12. 12.
    M.Y. Nassar, E.A. Abdelrahman, A.A. Aly, T.Y. Mohamed, A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media. J. Mol. Liq. 248, 302–313 (2017)CrossRefGoogle Scholar
  13. 13.
    H.A. Sani, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, A. Musa, T.A. Saleh, Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Prot. 109, 97–105 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Yuan, L. Wang, H. Liu, P. Tian, M. Yang, S. Xu, Z. Liu, Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance. Chin. J. Catal. 36, 1910–1919 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Zhang, A.N.C. van Laak, P.E. de Jongh, K.P. de Jong, Synthesis of large mordenite crystals with different aspect ratios. Microporous Mesoporous Mater. 126, 115–124 (2009)CrossRefGoogle Scholar
  16. 16.
    M.M. Mohamed, T.M. Salama, I. Othman, I.A. Ellah, Synthesis of high silica mordenite nanocrystals using o-phenylenediamine template. Microporous Mesoporous Mater. 84, 84–96 (2005)CrossRefGoogle Scholar
  17. 17.
    X. Li, R. Prins, J.A. van Bokhoven, Synthesis and characterization of mesoporous mordenite. J. Catal. 262, 257–265 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Samanta, N.K. Mal, P. Kumar, A. Bhaumik, Hydrothermally synthesized high silica mordenite as an efficient catalyst in alkylation reaction under liquid phase condition. J. Mol. Catal. A 215, 169–175 (2004)CrossRefGoogle Scholar
  19. 19.
    M.Y. Nassar, E.A. Abdelrahman, Hydrothermal tuning of the morphology and crystallite size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J. Mol. Liq. 242, 364–374 (2017)CrossRefGoogle Scholar
  20. 20.
    E.A. Abdelrahman, Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. J. Mol. Liq. 253, 72–82 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Esaifan, M. Hourani, H. Khoury, H. Rahier, J. Wastiels, Synthesis of hydroxysodalite zeolite by alkali-activation of basalt powder rich in calc-plagioclase. Adv. Powder Technol. 28, 473–480 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Kazemimoghadam, T. Mohammadi, Preparation of nano pore hydroxysodalite zeolite membranes using of kaolin clay and chemical sources. Desalination 278, 438–442 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Luo, W.W. Law, Y. Wu, W. Zhu, E.-H. Yang, Hydrothermal synthesis of needle-like nanocrystalline zeolites from metakaolin and their applications for efficient removal of organic pollutants and heavy metals. Microporous Mesoporous Mater. 272, 8–15 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Ates, G. Akgül, Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technol. 287, 285–291 (2016)CrossRefGoogle Scholar
  25. 25.
    W. Konicki, M. Aleksandrzak, E. Mijowska, Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem. Eng. Res. Des. 123, 35–49 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Abbas, M. Trari, Kinetic, equilibrium and thermodynamic study on the removal of Congo Red from aqueous solutions by adsorption onto apricot stone. Process Saf. Environ. Prot. 98, 424–436 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Jain, M. Agarwal, Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles. J. Water Process Eng. 19, 51–59 (2017)CrossRefGoogle Scholar
  28. 28.
    G.A. Adebisi, Z.Z. Chowdhury, P.A. Alaba, Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J. Clean. Prod. 148, 958–968 (2017)CrossRefGoogle Scholar
  29. 29.
    S.-Y. Yoon, C.-G. Lee, J.-A. Park, J.-H. Kim, S.-B. Kim, S.-H. Lee, J.-W. Choi, Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem. Eng. J. 236, 341–347 (2014)CrossRefGoogle Scholar
  30. 30.
    M.H. Nada, S.C. Larsen, Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous Mesoporous Mater. 239, 444–452 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Petushkov, S. Yoon, S.C. Larsen, Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Microporous Mesoporous Mater. 137, 92–100 (2011)CrossRefGoogle Scholar
  32. 32.
    S.K. Milonjic, L.S. Cerovic, D.M. Cokesa, S. Zec, The influence of cationic impurities in silica on its crystallization and point of zero charge. J. Colloid Interface Sci. 309, 155–159 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Zavareh, Z. Farrokhzad, F. Darvishi, Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water. Ecotoxicol. Environ. Saf. 155, 1–8 (2018)CrossRefGoogle Scholar
  34. 34.
    G.M. Canfield, M. Bizimis, S.E. Latturner, Sodalite ion exchange in polyethylene oxide oligomer solvents. J. Mater. Chem. 17, 4530–4534 (2007)CrossRefGoogle Scholar
  35. 35.
    C. Zhang, S. Li, Utilization of iron ore tailing for the synthesis of zeolite A by hydrothermal method. J. Mater. Cycles Waste Manage. 20, 1605–1614 (2018)CrossRefGoogle Scholar
  36. 36.
    C. Wang, D. Wang, S. Zheng, Preparation of aluminum silicate/fly ash particles composite and its application in filling polyamide 6. Mater. Lett. 111, 208–210 (2013)CrossRefGoogle Scholar
  37. 37.
    J.-C. Buhl, Synthesis of a sulfate enclathrated zeolite with intermediate framework structure between sodalite and cancrinite. Zeitschrift für anorganische und allgemeine Chemie 643, 1030–1036 (2017)CrossRefGoogle Scholar
  38. 38.
    H.M. Aly, M.E. Moustafa, M.Y. Nassar, E.A. Abdelrahman, Synthesis and characterization of novel Cu(II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: a new route to CuO nanoparticles. J. Mol. Struct. 1086, 223–231 (2015)CrossRefGoogle Scholar
  39. 39.
    M.Y. Nassar, H.M. Aly, E.A. Abdelrahman, M.E. Moustafa, Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: A new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye. J. Mol. Struct. 1143, 462–471 (2017)CrossRefGoogle Scholar
  40. 40.
    M.Y. Nassar, H.M. Aly, M.E. Moustafa, E.A. Abdelrahman, Synthesis, characterization and biological activity of new 3-substitued-4-amino-5-hydrazino-1,2,4-triazole schiff bases and their Cu(II) complexes: a new approach to CuO nanoparticles for photocatalytic degradation of methylene blue dye. J. Inorg. Organomet. Polym. Mater. 27, 1220–1233 (2017)CrossRefGoogle Scholar
  41. 41.
    M.Y. Nassar, Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method. Mater. Lett. 94, 112–115 (2013)CrossRefGoogle Scholar
  42. 42.
    M.Y. Nassar, I.S. Ahmed, Template-free hydrothermal derived cobalt oxide nanopowders: synthesis, characterization, and removal of organic dyes. Mater. Res. Bull. 47, 2638–2645 (2012)CrossRefGoogle Scholar
  43. 43.
    M.Y. Nassar, I.S. Ahmed, I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties. Spectrochim. Acta A 131, 329–334 (2014)CrossRefGoogle Scholar
  44. 44.
    M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq. 225, 730–740 (2017)CrossRefGoogle Scholar
  45. 45.
    M.Y. Nassar, M. Khatab, Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv. 6, 79688–79705 (2016)CrossRefGoogle Scholar
  46. 46.
    M.Y. Nassar, E.I. Ali, E.S. Zakaria, Tunable auto-combustion preparation of TiO2 nanostructures as efficient adsorbents for the removal of an anionic textile dye. RSC Adv. 7, 8034–8050 (2017)CrossRefGoogle Scholar
  47. 47.
    M.Y. Nassar, S. Abdallah, Facile controllable hydrothermal route for a porous CoMn2O4 nanostructure: synthesis, characterization, and textile dye removal from aqueous media. RSC Adv. 6, 84050–84067 (2016)CrossRefGoogle Scholar
  48. 48.
    M.Y. Nassar, I.S. Ahmed, H.S. Hendy, A facile one-pot hydrothermal synthesis of hematite (α-Fe2O3) nanostructures and cephalexin antibiotic sorptive removal from polluted aqueous media. J. Mol. Liq. 271, 844–856 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ehab A. Abdelrahman
    • 1
    Email author
  • Dina A. Tolan
    • 2
  • Mostafa Y. Nassar
    • 1
  1. 1.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Department of Chemistry, Faculty of ScienceMenoufia UniversityShebin El-KomEgypt

Personalised recommendations