Effects of ZnO/Mn Concentration on the Micro-structure and Optical Properties of ZnO/Mn–TiO2 Nano-composite for Applications in Photo-Catalysis

  • K. OmriEmail author
  • N. Alonizan


We successfully synthesized of ZnO/Mn–TiO2 (Mn–Ti) nano-composite for different ZnO:Mn (Zn-M) concentrations. These composites with high photo-catalytic activity derived from TiO2 and Zn-M nanoparticles elaborated by the sol–gel method. The SEM and TEM images indicated that samples reveals well-ordered and good size distribution of particles. In addition, the composite sample showed no aggregation in similitude with the anatase TiO2 sample. The study of optical properties of nano-composites shows that Zn-M nanoparticles caused to increase the optical activity of Mn–Ti composites samples and it established by UV–Vis, photo-luminescence, and photo-catalytic tests. The XRD study exhibited that in ours composites samples with increasing the Zn-M concentration, the particle size increased from 10 to 27 nm. PL measurements suggest that co-emission of a strong luminescence, high yellow emission at 563 nm, at 640 nm and at 774 nm is observed from the Mn–Ti composites samples. The photo-catalytic activity of the prepared nano-composite was examined for the degradation of methyl-orange (MO) by the irradiation of UV light.


Mn–Ti nano-composite TiO2 Sol–gel processes Photo-luminescence property Photo-catalytic property 


  1. 1.
    A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chim. 9, 750–760 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl. Catal. B: Environ. 158–159, 20–29 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Horikoshi, H. Hidaka, N. Serpone, Environmental remediation by an integrated microwave/UV-illumination technique. J. Photochem. Photobiol. A: Chem. 159, 289–300 (2003)CrossRefGoogle Scholar
  4. 4.
    Y. Paz, Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl. Catal. B: Environ. 99, 448–460 (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Li, Z. Sun, Y. Xue, G. Yao, S. Zheng, A facile synthesis of g-C3N4/TiO2 hybrid photocatalysts by sol–gel method and its enhanced photodegradation towards methylene blue under visible light. Adv. Powder Technol. 27(2), 330–337 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Xu, G. Zheng, H. Wu, J. Wang, F. Gu, J. Su, F. Xian, Z. Liu, Strong ultraviolet and violet emissions from ZnO/TiO2 multilayer thin films. Opt. Mater. 35, 1582–1586 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Yang, X. Zhang, H. Liu, C. Wang, S. Liu, P. Sun, L. Wang, Y. Liu, Heterostructured TiO2/WO3 porous microspheres: preparation, characterization and photocatalytic properties. Catal. Today 201, 195–202 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Wang, F.C. de Godoi, Z. Sun, Q. Zeng, S. Zheng, R.L. Frost, Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles. J. Colloid Interface Sci. 438, 204–211 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Shi, H. Shen, L. Jiang, X. Li, Co-emission of UV, violet and green photoluminescence of ZnO/TiO2 thin film. Mater. Lett. 61, 4735–4737 (2007)CrossRefGoogle Scholar
  11. 11.
    M.B. Askari, Z.T. Banizi, S. Soltani, M. Seifi, Comparison of optical properties and photocatalytic behavior of TiO2/MWCNT, CdS/MWCNT and TiO2/CdS/MWCNT nano-composites. Optik 157, 230–239 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Madani, K. Omri, N. Fattah, A. Ghorbal, X. Portier, Influence of silica ratio on structural and optical properties of SiO2/TiO2 nano-composites prepared by simple solid-phase reaction. J. Mater. Sci.: Mater. Electron. 28, 12977–12983 (2017)Google Scholar
  13. 13.
    K. Omri, L. El, Mir, Effect of manganese concentration on photoluminescence properties of Zn2SiO4:Mn nanophosphor material. Superlattices Microstruct. 70, 24–32 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Omri, I. Najeh, L. El, Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016)CrossRefGoogle Scholar
  15. 15.
    V. Loryuenyong, N. Jarunsak, T. Chuangchai, V. Buasri, The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles. Adv. Mater. Sci. and Eng. (2014). Google Scholar
  16. 16.
    Z. Antic, R.M. Krsmanovic, M.G. Nikolic, M. Marinovic-Cincovic, M. Mitric, S. Polizzi, M.D. Dramicanin, Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Mater. Chem. Phys. 135, 1064–1069 (2012)CrossRefGoogle Scholar
  17. 17.
    T. Homann, T. Bredow, K. Jug, Adsorption of small molecules on the anatase (1 0 0) surface‏. Surf. Sci. 555, 135 (2004).CrossRefGoogle Scholar
  18. 18.
    S. Sain, J. Bhattacharjee, M. Mukherjee, D. Das, S.K. Pradhan, Microstructural, magnetic and optical characterizations of nanocrystalline Zn1 – xMnxO dilute magnetic semiconductors synthesized by mechanical alloying. J. Alloys Compd. 519, 112–122 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Antic, M.R. Krsmanovi, M.G. Nikoli, G. Marko, M. Marinović-Cincović, M. Mitric, S. Polizzi, M.D. Dramićanin, Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Mater. Chem. Phys. 135, 1064–1069 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Vlazan, D.H. Ursu, C. Irina-Moisescu, I. Miron, P. Sfirloaga, E. Rusu, Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method. Mater. Charact. 101, 153–158 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Electrical, optical and photocatalytic properties of polyethylene glycol-assisted sol–gel synthesized Mn-doped TiO2/ZnO core–shell nanoparticles. Superlattices Microstruct. 64, 569–580 (2013)CrossRefGoogle Scholar
  22. 22.
    L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, Room temperature photoluminescence of anatase and rutile TiO2 powders‏. J. Lumin. 146, 199–204 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Chen, C. Zhang, W. Huang, C. Yang, T. Huang, Y. Situ, H. Huang, Synthesis of porous ZnO/TiO2 thin films with superhydrophilicity and photocatalytic activity via a template-free sol–gel method. Surf. Coat. Technol. 258, 531–538 (2014)CrossRefGoogle Scholar
  24. 24.
    V. Musat, A. Rego, R. Monteiro, E. Fortunato, Microstructure and gas-sensing properties of sol–gel ZnO thin films‏. Thin Solid Films 516, 1512 (2008)CrossRefGoogle Scholar
  25. 25.
    C. Shifu, Z. Wei, L. Wei, Z. Sujuan, Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2. Appl. Surf. Sci. 255, 2478–2484 (2008)CrossRefGoogle Scholar
  26. 26.
    B. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Menlo Park, CA, 1978)Google Scholar
  27. 27.
    L.G. Devi, N. Kottam, B.N. Murthy, S.G. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A: Chem. 328, 44–52 (2010)CrossRefGoogle Scholar
  28. 28.
    K. Oyoshi, N. Sumi, I. Umezu, R. Souda, A. Yamazaki, H. Haneda, T. Mitsuhashi, Structure, optical absorption and electronic states of Zn+ ion implanted and subsequently annealed sol–gel anatase TiO2 films. Nucl. Instrum. Methods B. 168, 221–228 (2000)CrossRefGoogle Scholar
  29. 29.
    S.S. Kanmani, K. Ramachandran, Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications. Renew. Energy 43, 149–156 (2012)CrossRefGoogle Scholar
  30. 30.
    N. San, A. Hatipoglu, G. Kocturk, Z. Cinar, Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates. J. Photochem. Photobiol. A. 146, 189–197 (2002)CrossRefGoogle Scholar
  31. 31.
    K. Karthik, S. Kesava Pandian, N. Victor, Jaya, Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol–gel method. Appl. Surf. Sci. 256, 6829–6833 (2010)CrossRefGoogle Scholar
  32. 32.
    J.F. Bertone, P. Jiang, K.S. Hwang, D.M. Mittleman, V.L. Colvin, Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys. Rev. Lett. 83(2), 300–303 (1999)CrossRefGoogle Scholar
  33. 33.
    D. Kanakaraju, S. Ravichandar, Y.C. Lim, Combined effects of adsorption and photocatalysis by hybrid TiO2/ZnO-calcium alginate beads for the removal of copper. J. Environ. Sci. 55, 214–223 (2017)CrossRefGoogle Scholar
  34. 34.
    B.A. Sava, A. Diaconu, M. Elisa, C.E.A. Grigorescu, C. Vasiliu, A. Manea, Structural characterization of the sol–gel oxide powders from the ZnO–TiO2–SiO2 system. Superlattices Microst. 42, 314–321 (2007)CrossRefGoogle Scholar
  35. 35.
    X. Xiao, W. Wenjun, L. Shuhong, Z. Wanquan, Z. Dong, D. Qianqian, G. Xuexi, Z. Bingyuan, Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals. Opt. Int. J. Light Electron Opt. 127(1), 135–138 (2016)CrossRefGoogle Scholar
  36. 36.
    S.K. Sinha, T. Rakshit, S.K. Ray, I. Manna, Characterization of ZnO-SnO2 thin film composites prepared by pulsed laser deposition. Appl. Surf. Sci. 257, 10551–10556 (2011)CrossRefGoogle Scholar
  37. 37.
    N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99, 16646‎–‎16654 (1995)CrossRefGoogle Scholar
  38. 38.
    J. Tian, L. Chen, J. Dai, X. Wang, Y. Yin, P. Wu, Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol–gel process. Ceram. Int. 35, 2261–2270 (2009)CrossRefGoogle Scholar
  39. 39.
    E. Rego, J. Marto, P. São, J.A. Marcos, Labrincha, Decolouration of Orange II solutions by TiO2 and ZnO active layers screen-printed on ceramic tiles under sunlight irradiation. Appl. Catal. A-Gen. 355, 109–114 (2009)CrossRefGoogle Scholar
  40. 40.
    R.J. Barnes, R. Molina, J. Xu, P.J. Dobson, I.P. Thompson, Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria. J. Nanopart. Res. 15, 1432–1442 (2013)CrossRefGoogle Scholar
  41. 41.
    D.L. Liao, C.A. Badour, B.Q. Liao, Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J. Photochem. Photobiol. A 194, 11–19 (2008)CrossRefGoogle Scholar
  42. 42.
    W.-Y. Choi, J. Chung, C.-H. Cho, J.-O. Kim, Fabrication and photocatalytic activity of a novel nanostructured TiO2 metal membrane. Desalination 279, 359–366 (2011)CrossRefGoogle Scholar
  43. 43.
    C.A. Aggelopoulos, M. Dimitropoulos, K. Govatsi, L. Sygellou, C.D. Tsakiroglou, S.N. Yannopoulos, Influence of the surface-to-bulk defects ratio of ZnO and TiO2 on their UV-mediated photocatalytic activity. Appl. Catal. B: Environ. 205, 292–301 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in GabesGabes UniversityGabesTunisia
  2. 2.Department of Physics, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations