Sonochemical Syntheses of a Hetero Metal–Organic Complex, a Precursor for Producing Clean Energy Source of Hydrogen

  • Zohreh Razmara


In the present study, a hetero nuclear complex formulated as [Cu(H2O)5Ni(dipic)2]·2H2O (1) that dipic is pyridine-2,6-dicarboxylic acid, was synthesized by a sonochemical process and characterized by several techniques such as elemental analysis, atomic absorption spectroscopy, conductivity measurement, Fourier transform infrared spectroscopy, ultra violet–visible spectroscopy, thermal decomposition and single crystal X-ray diffraction. Complex 1 was dispersed on the rutile (R-TiO2) as support and after thermal decomposition, catalyst of Cu–Ni/(R-TiO2) (2) was prepared. Nano-catalyst of 2 was studied by scanning electron microscopy, Brunauer–Emmett–Teller, transmission electron microscopy and powder X-ray diffraction. Catalyst 2 was applied as a catalyst in the water–gas shift reaction in the temperature range of 150–350 °C. In addition, catalyst of 2 was synthesized by co-precipitation and impregnation methods as references catalyst. The results showed that the catalyst of 2, synthesized by thermal decomposition of complex 1, has the highest catalytic performance compared to reference catalysts. Moreover, the results confirmed that the temperature of 250 °C is the optimal temperature for all catalysts. In another section of this study, the performance of anatase and rutile supported Cu–Ni/(R-TiO2) and Cu–Ni/(A-TiO2) catalysts prepared through calcination of 1 were compared for the amount of hydrogen produced. Stability test performed on catalyst of 2 at optimum temperature (250 °C) showed that all catalysts are stable for 12 h.

Graphical Abstract


Water–gas shift reaction Inorganic complex Thermal decomposition Catalytic performance Nano-catalyst 



I’m grateful to the University of Zabol for financial support.


  1. 1.
    P. Liu, J.A. Rodriguez, Y. Takahashi, K. Nakamura, J. Catal. 262, 294 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Li, Q. Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B: Environ. 27, 179 (2000)CrossRefGoogle Scholar
  3. 3.
    S. Saheli, A.R. Rezvani, A. Malekzadeh, J. Mol. Struct. 1144, 166–172 (2017)CrossRefGoogle Scholar
  4. 4.
    W. Dimmling, Starch-Stärke 30, 401 (1978)CrossRefGoogle Scholar
  5. 5.
    C. Ratnasamy, J.P. Wagner, Catal. Rev. 51, 325 (2009)CrossRefGoogle Scholar
  6. 6.
    W. Dimmling, G. Nesemann, H. Dellweg, Crit. Rev. Biotechnol. 2, 233 (1984)CrossRefGoogle Scholar
  7. 7.
    M.D.S. Santos, A. Albornoz, M. do Carmo Rangel. Stud. Surf. Sci. Catal. 162, 753 (2006)CrossRefGoogle Scholar
  8. 8.
    K.O. Hinrichsen, K. Kochloefl, M. Muhler, Handbook of Heterogeneous Catalysis, (Wiley, New York, 2008)Google Scholar
  9. 9.
    S.F. Yin, B.Q. Xu, X.P. Zhou, C.T. Au, Appl. Catal. A: Gen. 277(1–2), 1 (2004)CrossRefGoogle Scholar
  10. 10.
    O.N. Temkin, Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms, (Wiley, New York, 2012)CrossRefGoogle Scholar
  11. 11.
    J.R. Ross, Catal. Today 100, 151 (2005)CrossRefGoogle Scholar
  12. 12.
    H. Zhao, Y. Hu, J. Li, J. Mol. Catal. A: Chem. 149, 141 (1999)CrossRefGoogle Scholar
  13. 13.
    A. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, E.E. Fullerton, J. Phys. D: Appl. Phys. 35, 157 (2002)CrossRefGoogle Scholar
  14. 14.
    H. Schulz, Appl. Catal. A: Gen. 186, 3 (1999)CrossRefGoogle Scholar
  15. 15.
    C.A. Chanenchuk, I.C. Yates, C.N. Satterfield, Energy Fuel 5, 847 (1991)CrossRefGoogle Scholar
  16. 16.
    C. Pirola, C. Bianchi, A. Di Michele, S. Vitali, V. Ragaini, Catal. Commun. 10, 823 (2009)CrossRefGoogle Scholar
  17. 17.
    A.L.C. Pereira, G.J.P. Berrocal, S.G. Marchetti, A. Albornoz, A.O. de Souza, M. do Carmo Rangel, J. Mol. Catal. A: Chem. 281, 66 (2008)CrossRefGoogle Scholar
  18. 18.
    E. Matijević, P. Scheiner, J. Colloid. Interface Sci. 63, 509 (1978)CrossRefGoogle Scholar
  19. 19.
    C.R. Lund, J. Dumesic, J. Catal. 76, 93 (1982)CrossRefGoogle Scholar
  20. 20.
    G. Doppler, A. Trautwein, H. Ziethen, E. Ambach, R. Lehnert, M. Sprague, U. Gonser, Appl. Catal. 40, 119 (1988)CrossRefGoogle Scholar
  21. 21.
    R. Insoo, J. Resasco, P. Christopher, ACS. Catal. 8(8), 7368 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Zhou, T.N.M. Le, L.K. Huynh, B. Liu, Catal. Today 280, 210 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Ruiz Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni, ACS. Catal. 7(10), 6493 (2017)CrossRefGoogle Scholar
  24. 24.
    B.M. Reddy, G.M. Kumar, I. Ganesh, A. Khan, J. Mol. Catal. A: Chem. 247(1–2), 80 (2006)CrossRefGoogle Scholar
  25. 25.
    Y. Yang, H.W. Xiang, L. Tian, H. Wang, C.H. Zhang, Z.C. Tao, Y.W. Li, Appl. Catal. A: Gen. 284(1–2), 105 (2005)CrossRefGoogle Scholar
  26. 26.
    M. Salavati-Niasari, F. Davar, M. Mazaheri, Polyhedron 27(17), 3467 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27(17), 3514‏ (2008)CrossRefGoogle Scholar
  28. 28.
    M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, M.N. Yavarinia, Inorg. Chimica Act 362(10), 3691 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Farzanfar, A.R. Rezvani, C. R. Chim. 18(2), 178 (2015)CrossRefGoogle Scholar
  30. 30.
    N.O. Kenaga, H. Taniguchi, A. Watanabe, T. Suzuki, Fuel 79(3–4), 273 (2000)CrossRefGoogle Scholar
  31. 31.
    C.H. Bartholomew, (AIChE’03) (2003)Google Scholar
  32. 32.
    A. Eshraghi, A.A. Mirzaei, H. Atashi, J. Nat. Gas. Sci. Eng 26, 940 (2015)CrossRefGoogle Scholar
  33. 33.
    M.V. Kirillova, A.M. da Silva MFCG, Kirillov, da Silva J.J.F., A.J. Pombeiro, Inorg. Chim. Acta 360, 506 (2007)CrossRefGoogle Scholar
  34. 34.
    L.G. Sillen, E.A. Martell, J. Bjerrum, Stability Constants of Metal-Ion Complexes (Chemical Society, London, 1964)Google Scholar
  35. 35.
    C.F. Baes, R.E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976), p. 489Google Scholar
  36. 36.
    G. Marr, B.W. Rockett, Practical Inorganic Chemistry (VNR, London, 1972)Google Scholar
  37. 37.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1997)Google Scholar
  38. 38.
    G. Varasanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (Wiley, New York, 1974)Google Scholar
  39. 39.
    K. Akhbari, A. Morsali, J. Iran. Chem. Soc. 5, 48 (2008)CrossRefGoogle Scholar
  40. 40.
    N. Schumacher, A. Boisen, S. Dahl, A.A. Gokhale, S. Kandoi, L.C. Grabow, I. Chorkendorff, J. Catal. 229(2), 265 (2005)CrossRefGoogle Scholar
  41. 41.
    A. Andreev, V. Idakiev, D. Mihajlova, D. Shopov, Appl. Catal. 22(2), 385 (1986)CrossRefGoogle Scholar
  42. 42.
    Y. Li, Q. Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B: Environ. 27(3), 179 (2000)CrossRefGoogle Scholar
  43. 43.
    W.H. Chen, M.R. Lin, T.L. Jiang, M.H. Chen, Int. J. Hydrogen Energy 33(22), 6644 (2008)CrossRefGoogle Scholar
  44. 44.
    T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A: Gen. 244(2), 383 (2003)CrossRefGoogle Scholar
  45. 45.
    A.R.S. Rad, M.B. Khoshgouei, S. Rezvani, A.R. Rezvani, Fuel Process. Technol. 96, 9 (2012)CrossRefGoogle Scholar
  46. 46.
    J. Farzanfar, A.R. Rezvan, Res. Chem. Int. 41(11), 8975 (2015)CrossRefGoogle Scholar
  47. 47.
    S. Saheli, A.R. Rezvani, A. Malekzadeh, M. Dusek, V. Eigner, Int. J. Hydrogen Energy, (2017). Google Scholar
  48. 48.
    A.R.S. Rad, A.R. Rezvani, J. Mol. Catal. A: Chem. 344, 11 (2011)CrossRefGoogle Scholar
  49. 49.
    Z. Razmara, A.R. Rezvani, H. Saravani, Chem. Pap. 71, 849 (2017)CrossRefGoogle Scholar
  50. 50.
    Z. Razmara, A.R. Rezvani, H. Saravani, J. Mol. Struct. 1171, 503 (2018)CrossRefGoogle Scholar
  51. 51.
    Z. Rui, S. Wu, C. Peng, H. Ji, Chem. Eng. J. 243, 254 (2014)CrossRefGoogle Scholar
  52. 52.
    T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A: Gen. 244, 383 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZabolZabolIran

Personalised recommendations