Different Impacts on the Corrosion Behavior of Metal–Metal Glassy Alloys in Sulfuric Acid
- 44 Downloads
Abstract
Electrochemical techniques were used to investigate different factors such as concentration, immersion time, and temperature on the corrosion behavior of the metal–metal glassy Fe78Co9Cr10Mo2Al1 (VX9) and Fe49Co49V2 (VX50) (at.%) alloys in sulfuric acid (H2SO4). The passive film on the surface of the alloys at different H2SO4 concentrations was analyzed by X-ray photoelectron spectroscopy, and examined by scanning electron microscope and atomic force microscopy. The electrochemical measurements illustrate that the VX9 alloy has a lower corrosion resistivity than the VX50 alloy in all measured effects in this study, due to the n-type semiconductor passive layer (FeOOH, Fe3O4, and Fe2O3) that forms on this alloy. This occurred even though these alloys demonstrated a high degree of resistance at higher concentrations (12.0 M) of H2SO4 solution. A decrease in the corrosion resistance and an increase in the corrosion rate was observed with the incremental increase of immersion time and temperature. The thermodynamic parameters, such as \({\text{E}}_{{\text{a}}}^{*}\), ΔS* and ΔH*, were evaluated for the corrosion process and discussed in terms of a 3.0 M H2SO4 solution.
Keywords
Acidic solution Corrosion Glassy alloy Concentration Immersion time Temperature effectNotes
Acknowledgements
The authors would like to thank Dr. Hartmann Thomas from Vacuumschmelze company for providing the specimens. Also, the authors would like to thank Mr. Abdallah Jaber of physical department for conducting surface measurements of the study samples.
Compliance with Ethical Standards
Conflict of interest
The authors declare no conflict of interest.
References
- 1.R. Babilas, R. Nowosielski, Iron-based bulk amorphous alloys. Arch. Mater. Sci. Eng. 44, 5–27 (2010)Google Scholar
- 2.W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses. Mater. Sci. Eng. R 44, 45–89 (2004)CrossRefGoogle Scholar
- 3.C. Suryanarayana, A. Inoue, Bulk Metallic Glasses (CRC Press, Boca Raton, 2011)Google Scholar
- 4.H.F. Li, Y.F. Zheng, Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 36, 1–20 (2016)CrossRefGoogle Scholar
- 5.A. Inoue, B.L. Shen, C.T. Chang, Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa. Intermetallics 14, 936–944 (2006)CrossRefGoogle Scholar
- 6.Y. Li, X. Jia, W. Zhang, C. Fang, X. Wang, F. Qin, S. Yamaura, Y. Yokoyama, Effects of alloying elements on the thermal stability and corrosion resistance of an Fe-based metallic glass with low glass transition temperature. Metall. Mater. Trans. A 45, 2393–2398 (2014). https://doi.org/10.1007/s11661-013-2071-6 CrossRefGoogle Scholar
- 7.H.B. Fan, W. Zheng, G.Y. Wang, P.K. Liaw, J. Shen, Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions. Metall. Mater. Trans. A 42, 524–533 (2011). https://doi.org/10.1007/s11661-010-0500-3 CrossRefGoogle Scholar
- 8.J.J. Si, X.H. Chen, Y.H. Cai, Y.D. Wu, T. Wang, X.H. Hui, Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions. Corros. Sci. 107, 123–132 (2016)CrossRefGoogle Scholar
- 9.Z. Deng, X.H. Zhang, K.C. Chan, L. Liu, T. Li, Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation. Chemosphere 174, 76–81 (2017)CrossRefGoogle Scholar
- 10.A.K. Al-Harbi, K.M. Emran, Effect of immersion time on electrochemical and morphology of new Fe-Co metal-metal glassy alloys in acid rain. Arab. J. Chem. (2018). https://doi.org/10.1016/j.arabjc.2018.01.019 Google Scholar
- 11.K.M. Emran, H. AL-Refai, Pitting resistivity of Ni-based bulk metallic glasses in chloride solution. RSC Adv. 7, 37349–37358 (2017)CrossRefGoogle Scholar
- 12.K.M. Emran, H. AL-Refai, Electrochemical and surface investigation of Ni-Cr glassy alloys in nitric acid solution. Int. J. Electrochem. Sci. 12, 6404–6416 (2017)CrossRefGoogle Scholar
- 13.K.M. Emran, A.K. Al-Harbi, Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media. PLoS ONE (2018). https://doi.org/10.1371/journal.pone.0187567 Google Scholar
- 14.K.M. Emran, H. Al-refai, Immersion time effects on the corrosion and passivation characterization of Ni–Cr glassy alloys in artificial seawater. Desalin. Water Treat. 102, 165–172 (2018). https://doi.org/10.5004/dwt.2018.21828 CrossRefGoogle Scholar
- 15.R.S. Gonçalves, D.S. Azambuja, A.M.S. Lucho, Electrochemical studies of propargyl alcohol as corrosion inhibitor for nickel, copper, and copper/nickel (55/45) alloy. Corros. Sci. 44, 467–479 (2002)CrossRefGoogle Scholar
- 16.Z. Tao, S. Zhang, W. Li, B. Hou, Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivatives. Corros. Sci. 51, 2588–2595 (2009)CrossRefGoogle Scholar
- 17.R. Amini, H. Vakili, B. Ramezanzadeh, Studying the effects of poly (vinyl) alcohol on the morphology and anti-corrosion performance of phosphate coating applied on steel surface. J. Taiwan Inst. Chem. Eng. 58, 542–551 (2016)CrossRefGoogle Scholar
- 18.S.S. Abdel Rehim, H.H. Hassan, M.A. Amin, Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique. Appl. Surf. Sci. 187, 279–290 (2002)CrossRefGoogle Scholar
- 19.M. Anik, G. Celikten, Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions. Corros. Sci. 49, 1878–94 (2007)CrossRefGoogle Scholar
- 20.G. Baril, C. Blanc, N. Pébère, Influence of microstructure on the corrosion behavior of two magnesium alloys by EIS, in: Corrosion and Corrosion Prevention of Low Density Metals and Alloys: Proceedings of the International Symposium, vol. 23, ed. by B.A. Shaw, R.G. Buchheit, J.P. Moran (The Electrochemical Society, New Jersey, 2001), pp. 166–175Google Scholar
- 21.R. Pinto, M.G.S. Ferreira, M.J. Carmezim, M.F. Montemor, The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution. Electrochim. Acta. 56, 1535–1545 (2011)CrossRefGoogle Scholar
- 22.R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, K. Paucar, G. Garcés, Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution. Corros. Sci. 55, 301–312 (2012). https://doi.org/10.1016/j.corsci.2011.10.033 CrossRefGoogle Scholar
- 23.S.T. Arab, K.M. Emran, H.A. Al-Turaif, Passivity characteristics on Ni(Cr)(Fe)SiB glassy alloys in phosphate solution. J. Saudi Chem. Soc. 18, 169–182 (2014). https://doi.org/10.1016/j.jscs.2011.05.020 CrossRefGoogle Scholar
- 24.A.A. El Miligy, D. Geana, W.J. Lorenz, A theoretical treatment of the kinetics of iron dissolution and passivation. Electrochim. Acta 20, 273–281 (1975). https://doi.org/10.1016/0013-4686(75)90005-5 CrossRefGoogle Scholar
- 25.P. Lorbeer, W.J. Lorenz, The kinetics of iron dissolution and passivation depending on temperature and ionic strength. Corros. Sci. 20, 405–412 (1980). https://doi.org/10.1016/0010-938X(80)90008-6 CrossRefGoogle Scholar
- 26.P. Lorreer, W.J. Lorenz, The kinetics of iron dissolution and passivation in solutions containing oxygen. Electrochim. Acta 27, 375–381 (1980). https://doi.org/10.1016/0013-4686(80)87026-5 CrossRefGoogle Scholar
- 27.E. Kikuti, R. Conrrado, N. Bocchi, S.R. Biaggio, R.C. Rocha-Filho, Chemical and electrochemical coloration of stainless steel and pitting corrosion resistance studies. J. Braz. Chem. Soc. 15, 472–480 (2004). https://doi.org/10.1590/S0103-50532004000400005 CrossRefGoogle Scholar
- 28.A. Pardo, E. Otero, M.C. Merino, López,; M.D., M.V. Utrilla, F. Moreno, Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels. Corrosion 56, 411–418 (2000). https://doi.org/10.5006/1.3280545 CrossRefGoogle Scholar
- 29.A.I. Muñoz, J.G. Antón, J.L. Guiñón, V.P. Herranz, Effects of solution temperature on localized corrosion of high nickel content stainless steels and nickel in chromated LiBr solution. Corros. Sci. 48, 3349–3374 (2006)CrossRefGoogle Scholar
- 30.G.C. Palit, V. Kain, H.S. Gadiyar, Electrochemical investigations of pitting corrosion in nitrogen-bearing type 316LN stainless steel. Corrosion 49, 977–991 (1993). https://doi.org/10.5006/1.3316025 CrossRefGoogle Scholar
- 31.C.-C. Shih, C.-M. Shih, Y.-Y. Su, L.H.J. Su, M.-S. Chang, S.-J. Lin, Effect of Surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros. Sci. 46, 427–441 (2004)CrossRefGoogle Scholar
- 32.M.G. Fontana, Corrosion Engineering, 3rd edn. (McGraw-Higher Education, London, 1987), p. 0071003606Google Scholar
- 33.J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, ed. by J. Chastain, R.C. King Jr. (Physical Electronics, Eden Prairie, 1995)Google Scholar
- 34.M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051 CrossRefGoogle Scholar
- 35.A. Kapoor, S. Bahadur, Transfer film bonding and wear studies on CuS-nylon composite sliding against steel. Tribol. Int. 27, 323–329 (1994)CrossRefGoogle Scholar
- 36.M. Raposo, Q. Ferreira, P.A. Ribeiro, A guide for atomic force microscopy analysis of soft-condensed matter. Mod. Res. Educ. Top. Microsc. 1, 758–769 (2007)Google Scholar
- 37.K.M. Emran, Effects of concentration and temperature on the corrosion properties of the Fe–Ni–Mn alloy in HCl solutions. Res. Chem. Intermed. 41, 3583–3596 (2015). https://doi.org/10.1007/s11164-013-1473-9 CrossRefGoogle Scholar
- 38.A. Hamdy, N.S. El-Gendy, Thermodynamic, adsorption and electrochemical studies for corrosion inhibition of carbon steel by henna extract in acid medium. Egypt. J. Pet. 22, 17–25 (2013). https://doi.org/10.1016/j.ejpe.2012.06.002 CrossRefGoogle Scholar