PLLA/nHA Composite Films and Scaffolds for Medical Implants: In Vitro Degradation, Thermal and Mechanical Properties

  • Esperanza Díaz
  • Ane Libe Molpeceres
  • Iban Sandonis
  • Igor Puerto


Two poly(l-lactide) (PLLA) materials and changes in their mechanical, thermal, physical, and chemical properties while undergoing in vitro degradation are studied. The potential applications of PLLA implants extend to films for controlled drug release systems and biodegradable scaffolds for bone implants (fabricated with thermal induced phase separation) (TIPS) using bioactive nanohydroxyapatite particles. The study was conducted in a phosphate buffer saline (PBS) solution at 37 °C over 8 weeks. Reinforcement with nHA particles increased the elastic modulus and the yield stress, due perhaps to restricted C–C bond rotations and polymer sliding, although that increase was not proportional with the added percentages of nanoparticles. The elastic modulus and the yield stress of the films decreased faster than those of the scaffolds. As from the seventh week some samples could not be tested due to the fragility of the specimens. The scaffolds had a higher enthalpy of fusion than the films, suggesting that crystalline domains formed more easily in the scaffolds than in the films. The films degraded more quickly than the scaffolds, because the acid products resulting from the degradation process were evacuated from the films with greater difficulty than from the scaffolds in which the autocatalytic effect was of greater importance. Porosity was decisive in the rate of degradation.


Films Scaffolds In vitro degradation Thermal properties Mechanical properties 



Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ERDF, and ESF) are really appreciated.

Author Contributions

ALM, IS, IP and ED conceived and designed the experiments; ALM and IS performed the experiments; ALM, IS, IP and ED analyzed the data; ED contributed reagents/materials/analysis tools; ED wrote the paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    B.D. Ulery, L.S. Nair, C.T. Laurencin, J. Polym. Sci. B 49(12), 832–864 (2011)CrossRefGoogle Scholar
  2. 2.
    B. Patel, S. Chakraborty, J. Excip. Food Chem. 4(4), 126–157 (2013)Google Scholar
  3. 3.
    H. Patel, M. Bonde, G. Srinivasan, Trends Biomater. Artif. Organs 25(1), 20–29 (2011)Google Scholar
  4. 4.
    R.J. Kroeze, M.N. Helder Leon, E. Govaert, T.H. Smit, Materials 2, 833–856 (2009). CrossRefGoogle Scholar
  5. 5.
    E. Marin, M.I. Briceño, C. Caballero-George, Int. J. Nanomed. 8, 3071–3091 (2013)Google Scholar
  6. 6.
    R.S. Langer, N.A. Peppas, Biomaterials 2, 201 (1981)CrossRefGoogle Scholar
  7. 7.
    R.S. Langer, L.G. Cima, E. Wintermantel, Biomaterials 11, 738 (1990)CrossRefGoogle Scholar
  8. 8.
    N.B. Graham, Chem. Indus. 15, 482 (1990)Google Scholar
  9. 9.
    K.H. Lam, P. Nieuwenhuis, I. Molenaar, J. Mater. Sci.: Mater. Med. 5(4), 181 (1994)Google Scholar
  10. 10.
    J.M. Schakenraad, P. Nieuwenhuis, I. Molenaar, et al. J. Biomed. Mater. Res. 23, 1271 (1989)CrossRefGoogle Scholar
  11. 11.
    A. Gopferich, Biomaterials 17, 103 (1996)CrossRefGoogle Scholar
  12. 12.
    F. Burkersroda, L. Schedil, A. Gopferich, Biomaterials 23, 4221 (2002)CrossRefGoogle Scholar
  13. 13.
    G. Fuentes, Y. Hernández, Y. Campos, Latin Am. Appl. Res. 38, 105 (2008)Google Scholar
  14. 14.
    Y. Monhammadi, E. Jabbari, Macromol. Theory Simul. 15, 643 (2006)CrossRefGoogle Scholar
  15. 15.
    P. Elzbieta, M. Elzbieta, J. Mater. Sci.: Mater. Med. 19, 2063 (2008)Google Scholar
  16. 16.
    H. Zeqiang, X. Lizhi, J. Macromol. Sci. B 49, 1069–1082 (2010)Google Scholar
  17. 17.
    E. Díaz, I. Puerto, I. Sandonis, I. Ibáñez, Polymer-plastics technology and engineering. Polym.-Plast. Technol. Eng. 53, 150 (2014)CrossRefGoogle Scholar
  18. 18.
    E. Díaz, I. Puerto, I. Sandonis, I. Ibáñez, Polym. Eng. Sci. 54(11), 2571 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, L. Liu, S. Guo, Polym. Degrad. Stab. 95(2), 207–213 (2010)CrossRefGoogle Scholar
  20. 20.
    Z. Zhou, Q. Yi, L. Liu, X. Liu, Q. Liu, J. Macromol. Sci. B, 48, 309 (2009)CrossRefGoogle Scholar
  21. 21.
    P. Gentile, V. Chiono, I. Carmagnola et al., Int. J. Mol. Sci. 15, 3640 (2014)CrossRefGoogle Scholar
  22. 22.
    D.E. Owens, N.A. Peppas, Int. J. Pharmacol. 307(360), 93 (2006)CrossRefGoogle Scholar
  23. 23.
    R. Zhang, P.X. Ma, Biodegrad. Compos. Scaffolds 10, 446 (1999)Google Scholar
  24. 24.
    P.X. Ma, J.W. Choi, Tissue Eng. 7(1), 23 (2001)CrossRefGoogle Scholar
  25. 25.
    J.S. Bergström, D. Hayman, Ann. Biomed. Eng. 44, 330 (2016)Google Scholar
  26. 26.
    S. Farah, D. Anderson, R. Langer, Adv. Drug Deliv. Rev. 107, 367–392 (2016)CrossRefGoogle Scholar
  27. 27.
    D. Rasselet, A. Ruellan, A. Guinaultet, al., Eur. Polym. J. 50, 109 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Pantani, A. Sorrentino, Polym. Degrad. Stab. 98, 1089 (2013)CrossRefGoogle Scholar
  29. 29.
    M.J. Richardson, in Comprehensive polymer science, ed. by C. Booth, C. Price (Pergamon, Oxford, 1989), p. 867CrossRefGoogle Scholar
  30. 30.
    S.M. Li, H. Garreau, M. Vert, J. Mater. Sci. 1, 131 (1990)Google Scholar
  31. 31.
    J.W. Leenslang, A.J. Pennings, R.R. Bos, Biomaterials 8, 311 (1987)CrossRefGoogle Scholar
  32. 32.
    C. Plummer, C.J. Bourban, P.E. Manson, J. Mater. Sci.-Mater. Med. 23, 1371 (2012)CrossRefGoogle Scholar
  33. 33.
    C. Efe, F. Ozaydin, H. Ucisik et al., Therm. Anal. Calorim. 125, 659 (2016)CrossRefGoogle Scholar
  34. 34.
    J. An, C.K. Chua, K.F. Leong, C.H. Chen, J.P. Chen, Biomed. Microdev. 14(5), 863–872 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Naznin, H.K. Tareef, J. Nanomater. (2013). Google Scholar
  36. 36.
    E. Vey, C. Roger, L. Meehan, J. Booth, M. Claybourn, A.F. Miller, A. Saiani, Polym. Degrad. Stab. 93, 1869 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escuela de Ingeniería de Bilbao, Departamento de Ingeniería Minera, Metalúrgica y Ciencia de MaterialesUniversidad del País Vasco (UPV/EHU)PortugaleteSpain
  2. 2.BCMaterialsLeioaSpain
  3. 3.Escuela de Ingeniería de Bilbao, Departamento de Física Aplicada IUniversidad del País Vasco (UPV/EHU)PortugaleteSpain

Personalised recommendations