Advertisement

Synthesis of Tobramycin Stabilized Silver Nanoparticles and Its Catalytic and Antibacterial Activity Against Pathogenic Bacteria

  • Yasmeen JunejoEmail author
  • Muhammad Safdar
  • M. Asad Akhtar
  • Muthupandian Saravanan
  • Haseeb Anwar
  • Muhammad Babar
  • Rabia Bibi
  • M. Tariq Pervez
  • Tanveer Hussain
  • Masroor E. Babar
Article
  • 34 Downloads

Abstract

In the present study, tobramycin stabilized silver nanoparticles (Tob-AgNPs) were effectively synthesized in an aqueous medium by well-organized one-pot technique and successfully employed for the ultra-fast catalytic reduction of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA). Moreover, the perfection was attained in percent reduction of toxic 4-NP, 4-NA and their mixtures by changing and adjusting reaction period, quantity and concentration of catalyst. Interestingly, this research has shown that comprehensive ~ 99.9% reduction of nitroaromatic was achieved in short reaction time (60 s) by proficient Tob-AgNPs. Remarkably, the calculated rate constant (K) value for 4-NP, 4-NA and their mixtures catalytic reduction was achieved in 7 × 10−2 S−1, 10 × 10−2 S−1 and 8 × 10−2 S−1, respectively by plotting lnC versus time (s). Subsequently, the antibacterial efficacy of Tob-AgNPs was assessed alongside for the selected gram-positive and Gram-negative bacterial pathogens. The in vitro antibacterial activity of Tob-AgNPs clearly showed potential antibacterial property against Escherichia coli and Staphylococcus aureus compared with standard antibiotics. Thereby, these Tob-AgNPs may be potential candidates for the development of new bioactive materials for pathogenic microorganisms after further analysis to identify the active principles.

Graphical Abstract

Keywords

Synthesis Tob-AgNPs Nitroaromatics Catalytic activity Antibacterial activity Bacterial pathogens 

Notes

Acknowledgements

Authors would like to thanks to Virtual University of Pakistan who supported the research work and necessary facilities at Biolab, Multan Campus.

References

  1. 1.
    P.S. da Silva, B.C. Gasparini, H.A. Magosso, A. Spinelli, J. Hazard. Mater. 273, 70–77 (2014)CrossRefGoogle Scholar
  2. 2.
    F.L. Edwards, P.B. Tchounwou, Int. J. Environ. Res. Pub. Health 2, 430–441 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Shen, C. Feng, Y. Zhang, F. Jia, X. Sun, J. Li, W. Han, L. Wang, Y. Mu, J. Hazard. Mater. 209, 516–519 (2012)CrossRefGoogle Scholar
  4. 4.
    Y. Wu, L. Geng, X. Wang, R. Chen, Y. Wei, D. Wu, J. Hazard. Mater. 263, 556–561 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, J. Hazard. Mater. 201, 250–259 (2012)CrossRefGoogle Scholar
  6. 6.
    N. Rabaaoui, M.E.K. Saad, Y. Moussaoui, M.S. Allagui, A. Bedoui, E. Elaloui, J. Hazard. Mater. 250, 447–453 (2013)CrossRefGoogle Scholar
  7. 7.
    H.-G. Lee, G. Sai-Anand, S. Komathi, A.-I. Gopalan, S.-W. Kang, K.-P. Lee, J. Hazard. Mater. 283, 400–409 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Ma, Q. Zhou, A. Li, C. Shuang, Q. Shi, M. Zhang, J. Hazard. Mater. 266, 84–93 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Lai, Z. Chen, Y. Zhou, P. Yang, J. Wang, Z. Chen, J. Hazard. Mater. 250, 220–228 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Banik, R. Prakash, S. Upadhyay, Sens. Actuators B 131, 295–300 (2008)CrossRefGoogle Scholar
  11. 11.
    N. Pradhan, A. Pal, T. Pal, Langmuir 17, 1800–1802 (2001)CrossRefGoogle Scholar
  12. 12.
    K. Li, Z. Zheng, J. Feng, J. Zhang, X. Luo, G. Zhao, X. Huang, J. Hazard. Mater. 166, 1180–1185 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Yan, H. Tang, Z. Lin, M.N. Anjum, L. Zhu, Chemosphere 87, 111–117 (2012)CrossRefGoogle Scholar
  14. 14.
    N. Wang, T. Zheng, J. Jiang, P. Wang, Chem. Eng. J. 260, 386–392 (2015)CrossRefGoogle Scholar
  15. 15.
    N. Modirshahla, M. Behnajady, S. Mohammadi-Aghdam, J. Hazard. Mater. 154, 778–786 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Safdar, Y. Junejo, A. Balouch, J. Ind. Eng. Chem. 31, 216–222 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Junejo, M. Safdar (2015) Arab. J. Chem.  https://doi.org/10.1016/j.arabjc.2015.06.014 Google Scholar
  18. 18.
    M. Ovais, A.T. Khalil, A. Raza, N.U. Islam, M. Ayaz, M. Saravanan, M. Ali, I. Ahmad, M. Shahid, Z.K. Shinwari, Appl. Microbiol. Biotechnol. 102, 4393–4408 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Ovais, A.T. Khalil, A. Raza, M.A. Khan, I. Ahmad, N.U. Islam, M. Saravanan, M.F. Ubaid, M. Ali, Z.K. Shinwari, Nanomedicine 12, 3157–3177 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Junejo, A. Baykal, J. Inorg. Organomet. Polym. Mater. 24, 401–406 (2014)CrossRefGoogle Scholar
  21. 21.
    N. Salam, B. Banerjee, A.S. Roy, P. Mondal, S. Roy, A. Bhaumik, S.M. Islam, Appl. Catal. A 477, 184–194 (2014)CrossRefGoogle Scholar
  22. 22.
    M.T. Rahimi, E. Ahmadpour, B.R. Esboei, A. Spotin, M.H.K. Koshki, A. Alizadeh, S. Honary, H. Barabadi, M.A. Mohammadi, Int. J. Surg. 19, 128–133 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Barabadi, M. Ovais, Z.K. Shinwari, M. Saravanan, Green Chem. Lett. Rev. 10, 285–314 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Aksomaityte, M. Poliakoff, E. Lester, Chem. Eng. Sci. 85, 2–10 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Darroudi, A.K. Zak, M. Muhamad, N. Huang, M. Hakimi, Mater. Lett. 66, 117–120 (2012)CrossRefGoogle Scholar
  26. 26.
    S.-E. Kim, J.H. Park, B. cheol Lee, J.-C. Lee, Y.K. Kwon, Radiat. Phys. Chem. 81, 978–981 (2012)CrossRefGoogle Scholar
  27. 27.
    B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Mater. Sci. Eng. C 49, 373–381 (2015)CrossRefGoogle Scholar
  28. 28.
    U.B. Jagtap, V.A. Bapat, Ind. Crops Prod. 46, 132–137 (2013)CrossRefGoogle Scholar
  29. 29.
    S.S. Hassan, A.R. Solangi, M.H. Agheem, Y. Junejo, N.H. Kalwar, Z.A. Tagar, J. Hazard. Mater. 190, 1030–1036 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Tsuji, Y. Nishizawa, K. Matsumoto, N. Miyamae, T. Tsuji, X. Zhang, Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone. Colloids Surf. A 293, 185–194 (2007)CrossRefGoogle Scholar
  31. 31.
    A.A. Ashkarran, A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Curr. Appl. Phys. 10, 1442–1447 (2010)CrossRefGoogle Scholar
  32. 32.
    L. Huang, M.L. Zhai, D.W. Long, J. Peng, L. Xu, G.Z. Wu et al., UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J. Nanopart. Res. 10, 1193–1202 (2008)CrossRefGoogle Scholar
  33. 33.
    T.P. Amaladhas, S. Sivagami, T.A. Devi, N. Ananthi, S.P. Velammal, Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia. Adv. Nat. Sci. 3, 045006 (2012)Google Scholar
  34. 34.
    M. Pramanik, A. Bhaumik, J. Mater. Chem. A 1, 11210–11220 (2013)CrossRefGoogle Scholar
  35. 35.
    G. Mitrikas, C. Trapalis, N. Boukos, V. Psyharis, L. Astrakas, G. Kordas, J. Non-Cryst. Solids 224, 17–22 (1998)CrossRefGoogle Scholar
  36. 36.
    S. Pal, G. De, Mater. Res. Bull. 44, 355–359 (2009)CrossRefGoogle Scholar
  37. 37.
    R. Janardhanan, M. Karuppaiah, N. Hebalkar, T.N. Rao, Polyhedron 28, 2522–2530 (2009)CrossRefGoogle Scholar
  38. 38.
    J.-H. Lee, Y.-A. Kim, K.-M. Kim, Y.-D. Huh, J.-W. Hyun, H. Kim, S. Noh, C.-S. Hwang, Bull. Korean Chem. Soc. 28, 1091–1096 (2007)CrossRefGoogle Scholar
  39. 39.
    T. Wejrzanowski, R. Pielaszek, A. Opalińska, H. Matysiak, W. Łojkowski, K. Kurzydłowski, Appl. Surf. Sci. 253, 204–208 (2006)CrossRefGoogle Scholar
  40. 40.
    K. Hayakawa, T. Yoshimura, K. Esumi, Langmuir 19, 5517–5521 (2003)CrossRefGoogle Scholar
  41. 41.
    T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T.B. Scott, K.R. Hallam, Chem. Eng. J. 172, 258–266 (2011)CrossRefGoogle Scholar
  42. 42.
    Q. Zhou, G. Qian, Y. Li, G. Zhao, Y. Chao, J. Zheng, Two-dimensional assembly of silver nanoparticles for catalytic reduction of 4-nitroaniline. Thin Solid Films 516, 953–956 (2008)CrossRefGoogle Scholar
  43. 43.
    A. Biswas, S. Roy, A. Banerjee, Peptide stabilized Ag@ Au core-shell nanoparticles: synthesis, variation of shell thickness, and catalysis. Zeitschrift für anorganische und allgemeine Chemie 640, 1205–1211 (2014)CrossRefGoogle Scholar
  44. 44.
    P. Dauthal, M. Mukhopadhyay, Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation. Korean J. Chem. Eng. 32, 837–844 (2015)CrossRefGoogle Scholar
  45. 45.
    T.N.J.I. Edison, M.G. Sethuraman, Y.R. Lee, NaBH4 reduction of ortho and para-nitroaniline catalyzed by silver nanoparticles synthesized using Tamarindus indica seed coat extract. Res. Chem. Intermed. 42, 713–724 (2016)CrossRefGoogle Scholar
  46. 46.
    Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl. Catal. B 158, 129–135 (2014)CrossRefGoogle Scholar
  47. 47.
    Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li et al., Synthesis of Fe3O4@ SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 383, 96–102 (2012)CrossRefGoogle Scholar
  48. 48.
    L. Ai, J. Jiang, Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresour. Technol. 132, 374–377 (2013)CrossRefGoogle Scholar
  49. 49.
    N. Muniyappan, N. Nagarajan, Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem. 49, 1054–1061 (2014)CrossRefGoogle Scholar
  50. 50.
    J.-H. Noh, R. Meijboom, Appl. Surf. Sci. 320, 400–413 (2014)CrossRefGoogle Scholar
  51. 51.
    T.J.I. Edison, M. Sethuraman, Spectrochim. Acta Part A 104, 262–264 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yasmeen Junejo
    • 1
    Email author return OK on get
  • Muhammad Safdar
    • 2
  • M. Asad Akhtar
    • 3
  • Muthupandian Saravanan
    • 4
  • Haseeb Anwar
    • 5
  • Muhammad Babar
    • 6
  • Rabia Bibi
    • 7
  • M. Tariq Pervez
    • 8
  • Tanveer Hussain
    • 9
  • Masroor E. Babar
    • 9
  1. 1.Department of BiologyVirtual University of Pakistan-MultanMultanPakistan
  2. 2.Department of Molecular BiologyVirtual University of Pakistan-MultanMultanPakistan
  3. 3.Department of Medical Biology, Faculty of Health SciencesUniversity of TromsøTromsøNorway
  4. 4.Department of Medical Microbiology and Immunology, School of Medicine, College of Health ScienceMekelle UniversityMekelleEthiopia
  5. 5.Department of PhysiologyGovernment College UniversityFaisalabadPakistan
  6. 6.Institute of Molecular Biology & Bio-TechnologyBahauddin Zakariya UniversityMultanPakistan
  7. 7.Department of Molecular BiologyVirtual University of Pakistan-RawalpindiRawalpindiPakistan
  8. 8.Department of Bioinformatics & Computational BiologyVirtual University of Pakistan-LahoreLahorePakistan
  9. 9.Department of Molecular BiologyVirtual University of Pakistan-LahoreLahorePakistan

Personalised recommendations