Synthesis and Characterization of 1D-MoO3 Nanorods Using Abutilon indicum Extract for the Photoreduction of Hexavalent Chromium

  • M. Abinaya
  • K. Saravanakumar
  • E. Jeyabharathi
  • V. MuthurajEmail author


In this present work, we report a novel green synthesis of MoO3 nanorods (NRs) utilizing Abutilon Indicum (A. Indicum) plant extract, containing palmitric, linoleic, linolinic acids and their derivatives which might be acting as both reducing and stabilizing agents. The synthesized catalyst has been employed to reduce toxic Cr(VI) to Cr(III) in the aqueous solution which was continuously monitored by UV–Vis absorbance spectroscopy. The structural, optical and morphological characterizations are performed using PXRD, UV-DRS, PL, FESEM, TEM, FT-IR and EDAX. The optical properties were precisely investigated by calculating the Tauc’s relation. The band gap of as synthesized MoO3 was found to be 2.57 eV (483 nm) which falls under visible region, thus catalyst can be activated under solar light which could be cost effective. Biologically synthesized MoO3 NRs showed highest activity, i.e., almost 99% toward reduction of Cr(VI) under solar light. In addition to this, the photo firmness and reusability test showed that the catalyst can be reused upto five cycles without waning its activity.


MoO3 NRs Green synthesis Photocatalyst Cr(VI) reduction 


  1. 1.
    G. Shan, R.Y. Surampalli, R.D. Tyagi, T.C. Zhang, Nanomaterials for environmental burden reduction, waste treatment and non-point source pollution control: a review. Front. Environ. Sci. Eng. China 3, 249–264 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Shan, S. Yan, R.D. Tyagi, R.Y. Surampalli, T.C. Zhang, Applications of nanomaterials in environmental science and engineering. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 13, 110–119 (2009)CrossRefGoogle Scholar
  3. 3.
    P. Mehndiratta, A. Jain, S. Srivastava, N. Gupta, Environmental pollution and nanotechnology. Environ. Pollut. 2, 49–58 (2013)Google Scholar
  4. 4.
    I.S. Yunus, Harwin, A. Kurniawan, D. Adityawarman, A. Indarto, Nanotechnologies in water and air pollution treatment. Environ. Technol. Rev. 1, 136–148 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Ried, A. Kahn, Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24, 1–20 (2012)CrossRefGoogle Scholar
  6. 6.
    X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Ma, Y. Jia, Z. Jiao, L. Wang, M. Yang, Y. Bi, Y. Qi, Facile synthesize α-MoO3 nanobelts with high adsorption property. Mater. Lett. 157, 53–56 (2015)CrossRefGoogle Scholar
  8. 8.
    S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Concentration dependent structural, optical and electrochromic properties of MoO3 thin films. Int. J. Electrochem. Sci. 3, 953–960 (2008)Google Scholar
  9. 9.
    A.K. Prasad, D.J. Kubinski, P.I. Gouma, Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sens. Actuators B 93, 25–30 (2003)CrossRefGoogle Scholar
  10. 10.
    S.S. Tarsame, G.B. Reddy, Infrared spectroscopic studies on Mg intercalated crystalline MoO3 thin films. Appl. Surf. Sci. 236(1–4), 1–5 (2004)Google Scholar
  11. 11.
    Y.J. Xue, L.Z. Zhi, C. Jin, Q.Z. Wen, High stability and low driving voltage green organic light emitting diode with molybdenum oxide as buffer layer. Solid-State Electron. 52, 952–956 (2008)CrossRefGoogle Scholar
  12. 12.
    R. Liu, C. Xu, R. Biswas, J. Shinar, R. Shinar, MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolormicrocavity organic light emitting diodes. Appl. Phys. Lett. 99, 184 (2011)Google Scholar
  13. 13.
    T. Shizuo, N. Koji, T. Yasunori, Metal oxides as a hole-injecting layer for an organic electroluminescent device. J. Phys. D 29, 2750–2757 (1996)CrossRefGoogle Scholar
  14. 14.
    T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–153 (2010)CrossRefGoogle Scholar
  15. 15.
    J.S. Chen, Y.L. Cheah, S. Madhavi, X.W. Lou, Fast synthesis of α-MoO3 nanorods with controlled aspect ratios and their enhanced lithium storage capabilities. J. Phys. Chem. C 114, 8675–8682 (2010)CrossRefGoogle Scholar
  16. 16.
    L. Mai, F. Yang, Y. Zhao, X. Xu, L. Xu, B. Hu, Y. Luo, H. Liu, Molybdenum oxide nanowires: synthesis & properties. Mater. Today 14, 346–350 (2011)CrossRefGoogle Scholar
  17. 17.
    L.X. Song, J. Xia, Z. Dang, J. Yang, L.B. Wang, J. Chen, Formation, structure and physical properties of a series of α-MoO3 nanocrystals: from 3D to 1D and 2D. CrystEngComm 14, 2675–2680 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Manivel, G.J. Lee, C.Y. Chen, J.H. Chen, S.H. Ma, T.L. Horng, J.J. Wu, Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation. Mater. Res. Bull. 62, 184–191 (2015)CrossRefGoogle Scholar
  19. 19.
    T.T.P. Pham, P.H.D. Nguyen, T.T. Vo, H.H.P. Nguyen, C.L. Luu, Facile method for synthesis of nanosized β–MoO3 and their catalytic behavior for selective oxidation of methanol to formaldehyde. Adv. Nat. Sci. 6, 045010 (2015)Google Scholar
  20. 20.
    A. Kumar, G. Pandey, Synthesis, characterization, effect of temperature on band gap energy of molybdenum oxide nano rods and their antibacterial activity. Am. J. Appl. ind. Chem. 3, 81–85 (2017)Google Scholar
  21. 21.
    H. Simchi, B.E. McCandless, T. Meng, W.N. Shafarman, Structure and interface chemistry of MoO3 back contacts in Cu (In, Ga)Se2 thin film solar cells. J. Appl. Phys. 115, 033514 (2014)CrossRefGoogle Scholar
  22. 22.
    G.P. Nagabhushana, D. Samrat, G.T. Chandrappa, α-MoO3 nanoparticles: solution combustion synthesis, photocatalytic and electrochemical properties. RSC Adv. 4, 56784–56790 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Song, Y. Zhao, Z. Huang, J. Zhao, Synthesis, characterization, effect of temperature on band gap energy of molybdenum oxide nano rods and their antibacterial activity. J. Alloys Compd. 693, 1290–1296 (2017)CrossRefGoogle Scholar
  24. 24.
    C. Asim, C. Prakash, The Treatise on Indian Medicinal Plants. (Publication and information Directorate, New Delhi, 1991), pp. 174–175Google Scholar
  25. 25.
    R. Saraswathi, L. Upadhyay, R. Venkatakrishnan, R. Meera, P. Devi, Phyto chemical investigation, analgesic and anti-inflammatory activity of Abutilon indicum Linn. Int. J. Pharm. Pharm. Sci. 3, 154–156 (2011)Google Scholar
  26. 26.
    E. Sujatha, G.G. Rajesh, C.S. Kagitha, N. Kazmi, Antimicrobial activity of Abutilon indicum. World J. Pharm. Pharm. Sci. 4–9, 946–949 (2015)Google Scholar
  27. 27.
    M.K. Patel, A.P. Rajput, Therapeutic significance of Abutilon indicum: an overview. Am. J. Pharm Tech Res. 4, 20–35 (2013)Google Scholar
  28. 28.
    S.B. Gaikwad, G.K. Mohan, Atibala: an overview. Asian J. Pharm. Res. Healthc. 3(2), 29–37 (2011)Google Scholar
  29. 29.
    V.M. Chandrashekhar, A.N. Nagappa, T.S. Channesh, P.V. Habbu, K.P. Rao, Anti-diarrhoeal activity of Abutilon indicum Linn leaf extract. J. Nat. Rem 4, 12–16 (2004)Google Scholar
  30. 30.
    N.L. Dashputre, N.S. Naikwade, Evaluation of anti-ulcer activity of methanolic extract of Abutilon indicum Linn leaves in experimental rats. Int. J. Pharm. Sci. Drug Res. 3, 97–100 (2011)Google Scholar
  31. 31.
    M.S. Mohite, P.A. Shelar, V.N. Raje, S.J. Babar, R.K. Sapkal, Review on pharmacological properties of Abutilon indicum. Asian J. Pharm. Res. 2(4), 156–160 (2012)Google Scholar
  32. 32.
    M. Prathap, A. Alagesan, B.D. Ranjitha Kumari, Anti-bacterial activities of silver nanoparticles synthesized from plant leaf extract of Abutilon indicum (L.) Sweet. J. Nanostruct. Chem. 4, 106 (2014)CrossRefGoogle Scholar
  33. 33.
    R. Mata, J.R. Nakkala, S.R. Sadras, Biogenic silver nanoparticles from Abutilon indicum: their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids Surf. B 128, 276–286 (2015)CrossRefGoogle Scholar
  34. 34.
    R. Mata, J.R. Nakkala, S.R. Sadras, Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colloids Surf. B 143, 499–510 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut. 200, 59–77 (2009)CrossRefGoogle Scholar
  36. 36.
    T. Karthikeyan, S. Rajgopal, Miranda LR, Chromium(VI) adsorption from aqueous solution by Hevea brasilinesis sawdust activated carbon. J. Hazard. Mater. B 124, 192–199 (2005)CrossRefGoogle Scholar
  37. 37.
    K. Bhowmik, A. Mukherjee, M.K. Mishra, G. De, Stable Ni nanoparticle—reduced graphene oxide composites for the reduction of highly toxic aqueous Cr(VI) at room temperature. Langmuir 30, 3209–3216 (2014)CrossRefGoogle Scholar
  38. 38.
    S.M. Chuang, Y.C. Feng, S.J. Lee, K.H. Choo, C.W. Li, Electrochemical Cr(VI) reduction using a sacrificial Fe anode: impacts of solution chemistry and stoichiometry. Sep. Purif. Technol. 191, 167–172 (2018)CrossRefGoogle Scholar
  39. 39.
    D. Xu, K. Zhu, X. Zheng, R. Xiao, Poly(ethylene-co-vinyl alcohol) functional nanofiber membranes for the removal of Cr(VI) from water. Ind. Eng. Chem. Res. 54(27), 6836–6844 (2015)CrossRefGoogle Scholar
  40. 40.
    V.K. Gupta, M. Gupta, S. Sharma, Process development for the removal of lead and chromium from aqueous solutions using red mud an aluminium industry waste. Water Res. 35(5), 1125–1134 (2001)CrossRefGoogle Scholar
  41. 41.
    P.A. Kumar, M. Ray, C. Saswati, Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J. Hazard. Mater. 143, 24–32 (2007)CrossRefGoogle Scholar
  42. 42.
    S. Li, X. Lu, X. Li, Y. Xue, C. Zhang, J. Lei, C. Wang, Preparation of bamboo-like PPy nanotubes and their application for removalof Cr(VI) ions in aqueous solution. J. Colloid Interface Sci. 378, 30–35 (2012)CrossRefGoogle Scholar
  43. 43.
    X. Hua, H. Ji, F. Chang, Y. Luo, Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation. Catal. Today 224, 34–40 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Chakrabarti, B. Chaudhuri, S. Bhattacharjeea, A.K. Ray, B.K. Duttac, Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chem. Eng. J. 153, 86–93 (2009)CrossRefGoogle Scholar
  45. 45.
    M. Gheju, I. Balcu, G. Mosoarca, Removal of Cr(VI) from aqueous solutions by adsorption on MnO2. J. Hazard. Mater. 310, 270–277 (2016)CrossRefGoogle Scholar
  46. 46.
    Y. Zhao, D. Zhao, C. Chen, X. Wang, Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J. Colloid Interface Sci. 405, 211–217 (2013)CrossRefGoogle Scholar
  47. 47.
    L. Wang, N. Wang, L. Zhu, H. Yu, H. Tang, Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J. Hazard. Mater. 152, 93–99 (2008)CrossRefGoogle Scholar
  48. 48.
    X. Wang, S.O. Pehkonen, A.K. Ray, Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 43, 1665–1672 (2004)CrossRefGoogle Scholar
  49. 49.
    Y. Zhong, X. Qiu, D. Chen, N.J. Li, Q.F. Xu, H. Li, J. He, J.M. Lu, Flexible electrospun carbon nanofiber/Tin(IV) sulfide core/sheath membranes for photocatalytically treating chromium(VI)-containing wastewater. ACS Appl. Mater. Interfaces 8(42), 28671–28677 (2016)CrossRefGoogle Scholar
  50. 50.
    Y.C. Zhang, J. Li, M. Zhang, D.D. Dionysiou, Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ. Sci. Technol. 45, 9324–9331 (2011)CrossRefGoogle Scholar
  51. 51.
    R. Gaur, P. Jeevanandam, Synthesis of SnS2 nanoparticles and their application as photocatalysts for the reduction of Cr(VI). J. Nanosci. Nanotechnol. 18(1), 165–177 (2018)CrossRefGoogle Scholar
  52. 52.
    S. Gupta, A. Yadav, N. Verma, Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chem. Eng. J. 307, 729–738 (2016)CrossRefGoogle Scholar
  53. 53.
    L. Shen, L. Huang, S. Liang, R. Liang, N. Qina, L. Wu, Electrostatically derived self-assembly of NH2-mediated zirconium MOFs with graphene for photocatalytic reduction of Cr(VI). RSC Adv. 4, 25–46 (2014)Google Scholar
  54. 54.
    S. Lakshmi Prabavathi, P. Senthil Kumar, K. Saravanakumar, V. Muthuraj, S. Karuthapandian, A novel sulphur decorated 1-D MoO3 nanorods: facile synthesis and high performance for photocatalytic reduction of hexavalent chromium. J. Photochem. Photobiol. A 356, 642–651 (2018)CrossRefGoogle Scholar
  55. 55.
    M.S. Bhatti, A.S. Reddy, A.K. Thukral, Electrocoagulation removal of Cr(VI) from simulated wastewater using responsesurface methodology. J. Hazard. Mater. 172, 839–846 (2009)CrossRefGoogle Scholar
  56. 56.
    B. Saha, C. Orvig, Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 254, 2959–2972 (2010)CrossRefGoogle Scholar
  57. 57.
    W. Cao, Z. Wang, H. Ao, B. Yuan, Removal of Cr(VI) by corn stalk based anion exchanger: the extent and rate of Cr(VI) reduction as side reaction. Colloids Surf. A 539, 424–432 (2018)CrossRefGoogle Scholar
  58. 58.
    R. Lokesh, V. Manasvi, B.P. Lakshmi, Antibacterial and antioxidant activity of saponin from Abutilon indicum leaves. Asian J. Pharm. Clin. Res. 9(3), 344–347 (2016)Google Scholar
  59. 59.
    P. Thakor, J.B. Mehta, R.R. Patel, D.D. Patel, R.B. Subramanian, V.R. Thakkar, Extraction and purification of phytol from Abutilon indicum: cytotoxic and apoptotic activity. RSC Adv. 6, 48336–48345 (2016)CrossRefGoogle Scholar
  60. 60.
    V.G. Kumara, S.D. Gokavarapu, A. Rajeswari, T.S. Dhas, V. Karthick, Z. Kapadia, T. Shrestha, I.A. Barathy, A. Roy, S. Sinha, Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf. B 87, 159–163 (2011)CrossRefGoogle Scholar
  61. 61.
    J.V. Kumar, R. Karthik, S.M. Chen, K. Saravanakumar, G. Mani, V. Muthuraj, Novel hydrothermal synthesis of MoS2 nanocluster structure for sensitive electrochemical detection of human and environmental hazardous pollutant 4-aminophenol. RSC Adv. 6, 40399–40407 (2016)CrossRefGoogle Scholar
  62. 62.
    X.W. Lou, H.C. Zeng, Hydrothermal Synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem. Mater. 14(11), 4781–4789 (2002)CrossRefGoogle Scholar
  63. 63.
    P.J. Lu, M. Lei, J. Liu, Graphene nanosheets encapsulated α-MoO3 nanoribbons with ultrahigh lithium ion storage properties. CrystEngComm 16, 6745 (2014)CrossRefGoogle Scholar
  64. 64.
    D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, H. Xu, H. Lu, D. Yang, J. Sun, L. Gao, Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem. 21, 9332–9342 (2011)CrossRefGoogle Scholar
  65. 65.
    P. Li, J. Li, C. Wu, Q. Wu, J. Li, Synergistic antibacterial effects of βlactam antibiotic combined with silver nanoparticles. Nanotechnology 16, 1912–1917 (2005)CrossRefGoogle Scholar
  66. 66.
    R. Ramasubramaniaraja, Pharmacognostical Phytochemical including GC–MS investigation of ethanolic leaf extracts of Abutilon indicum (Linn). Asian J. Pharm. Anal. 1(4), 88–92 (2011)Google Scholar
  67. 67.
    K. Shanthi, P. Gowri, M. Gopu, Pharmacognosy, analysis of bio-active compounds form Abutilon indicum Linn. (Malvaceae) by using gas chromatography and mass spectrometry (GC–MS) in ethanol and hexane solvent. J. Pharm. Res. 4(12), 4795–4797 (2011)Google Scholar
  68. 68.
    D. Saranya, J. Sekar, GC–MS and FT-IR analyses of ethylacetate leaf extract of Abutilon indicum (L.) Sweet. Int. J. Adv. Res. Biol. Sci. 3(2), 193–197 (2016)Google Scholar
  69. 69.
    Z. Ai, Y. Cheng, L. Zhang, J. Qiu, Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core—shell nanowires. Environ. Sci. Technol. 42(18), 6955–6960 (2008)CrossRefGoogle Scholar
  70. 70.
    U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 6, 534 (2011)CrossRefGoogle Scholar
  71. 71.
    K. Saravanakumar, V. Muthuraj, S. Vadivel, Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Adv. 6, 61357–61366 (2016)CrossRefGoogle Scholar
  72. 72.
    K. Saravanakumar, P. Senthil Kumar, J. Vinoth Kumar, S. Karuthapandian, R. Philip, V. Muthuraj, Controlled synthesis of plate like structured MoO3 and visible light induced degradation of rhodamine B dye solution. Energy Environ. Focus. 5(1), 50–57 (2016)CrossRefGoogle Scholar
  73. 73.
    M. Sakar, C.-C. Nguyen, M.-H. Vu, T.-O. Do, A perspective review on the materials and mechanisms of photo-assisted chemical reactions under light and dark: can it be called as day-night photocatalysis? Chem Sus Chem 11(5), 1–20 (2017)Google Scholar
  74. 74.
    K. Saravanakumar, M.M. Ramjan, P. Suresh, V. Muthuraj, Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants. J. Alloys Compd. 664, 149–160 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Abinaya
    • 1
  • K. Saravanakumar
    • 1
    • 2
  • E. Jeyabharathi
    • 1
  • V. Muthuraj
    • 1
  1. 1.Department of ChemistryVHNSN College (Autonomous)VirudhunagarIndia
  2. 2.Department of ChemistrySri Kaliswari College (Autonomous)SivakasiIndia

Personalised recommendations