Advertisement

Thermal Behavior, Sintering and Mechanical Characterization of Multiple Ion-Substituted Hydroxyapatite Bioceramics

  • Mustapha Hidouri
  • Sergey V. Dorozhkin
  • Nawaf Albeladi
Article
  • 25 Downloads

Abstract

Several trace elements such as Mg2+, Na+, K+, F, Cl are contained in biological apatite of natural bones. The presence of these elements in bones is indispensable for their calcification and mineralization. Their simultaneous insertion in the apatite framework with preserved structure was our aim. Therefore, calcium hydroxyapatite (HAp) biomaterials doped with the aforementioned ions was the subject of the present study. Three formulations of ion-substituted HAp powders were prepared via a wet-chemical precipitation method. Analysis and characterization by several techniques proved that the obtained powders were of apatitic nature. Although stoichiometry was slightly weaker, multiple ion-substitutions lead to stable structures. When sintering, calcined powders at 500 °C for 1 h were uniaxially isostatically cold compacted into pellets. These pellets were pressurelessly sintered in a temperature range of 900–1250 °C. The maximum 95% densification value was obtained with the samples sintered at temperature 1150 °C for 1 h. A secondary phase of β-Ca3(PO4)2 appeared at 730 °C related to partial decomposition of the apatitic phase. The sintered materials were mechanically characterized by measurements of compressive and flexural strengths, fracture toughness, Young’s modulus and microhardness and the maximum values were obtained as 154 MPa, 60 MPa, 1.55 MPa·m1/2, 151 GPa and 600 Hv, respectively.

Keywords

Ion-substituted hydroxyapatite Bioceramics Sintering Mechanical properties 

Notes

Funding

The funding was provided by Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (TN).

References

  1. 1.
    J. Jansen, E. Ooms, N. Verdonschot, J. Wolke, Injectable calcium phosphate cement for bone repair and implant fixation. Orthop. Clin. North Am. 36, 89–95 (2005)CrossRefGoogle Scholar
  2. 2.
    J.H. Shepherd, S.M. Best, Calcium phosphate scaffolds for bone repair. Biomater. Regen. Med. Overv. 4, 83–92 (2011)Google Scholar
  3. 3.
    J. Lu, H. Yu, Ch Chen, Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 8, 2015–2033 (2018)CrossRefGoogle Scholar
  4. 4.
    A. Bigi, E. Boanini, Functionalized biomemetic calcium phosphate for bone tissue repair. J. Appl. Biomater. Funct. Mater. 15, 313–325 (2017)Google Scholar
  5. 5.
    Ch. Sheng, H. He, Development and application of calcium phosphate cement bone, in Springer Series in Biomaterial Sciences and Engineering (Springer, Singapore, 2018)Google Scholar
  6. 6.
    L.E. Cary, H.H.K. Xu, C.G. Simon Jr., S. Takagi, L.C. Chow, Premixed rapid-setting calcium phosphate composite for bone repair. Biomaterials 26, 5002–5014 (2005)CrossRefGoogle Scholar
  7. 7.
    S.V. Dorozhkin, Calcium Orthophosphate-Based Bioceramics and Biocomposites (Wiley, Weinheim, 2016), p. 405CrossRefGoogle Scholar
  8. 8.
    M. Bongio, J.J.J.P. Van den Beucken, S.C.G. Leeuwenburgh, Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. J. Mater. Chem. 20, 8747–8759 (2010)CrossRefGoogle Scholar
  9. 9.
    E. Landi, S. Sprio, M. Sandri, G. Celotti, A. Tampieri, Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater. 4, 656–663 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Jabr Al-Sanabani, A.A. Madfa, F.A. Al-Sanabani, Application of calcium phosphate materials in dentistry. Int. J. Biomater. 2013, 876132 (2013)Google Scholar
  11. 11.
    D. Bellucci, A. Sola, V. Cannillo, Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: state of the art and current applications. J. Biomed. Mater. Res. A. 104, 1030–1056 (2016)CrossRefGoogle Scholar
  12. 12.
    Y.M. Kong, H.E. Kim, H.W. Kim, Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. J. Biomed. Mater. Res. B 84, 334–339 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Ning, K. Dai, Research development of hydroxyapatite-based composites used as hard tissue replacement. J. Biomed. Eng. 20, 550–554 (2003)Google Scholar
  14. 14.
    H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Sulaiman, T. Keong, C.H. Cheng, A. Saim, R. Idrus, Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J. Med. Res. 137, 1093–1101 (2013)Google Scholar
  16. 16.
    M. Kamitakahara, C. Ohtsuki, T. Miyazaki, Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 23, 197–212 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Jamelle, R. Hill, D. Gillam, In-vitro properties of calcium phosphate cement as a bone grafting material. Int. Dent. J. Stud. Res. 3, 43–48 (2015)Google Scholar
  18. 18.
    A. Sadiasa, S.K. Sarkar, R.A. Franco, Y.K. Min, B.T. Lee, Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. J. Biomater. Appl. 28, 739–756 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Yu, Y. Li, K. Zhao, Y. Tang, Z. Cheng, J. Chen, Y. Zang, J. Wu, L. Kong, S. Liu, W. Lei, A novel injectable calcium phosphate cement bioactive glass composite for bone regeneration. Int. Dent. J. Stud. Res. 3, 43–48 (2015)Google Scholar
  20. 20.
    Q. Liu, S. Huang, J.P. Matinlinna, Z. Chen, H. Pan, Insight into biological apatite: physiochemical properties and preparation approaches. BioMed. Res. Int. 2013, 1–13 (2013)Google Scholar
  21. 21.
    R.Z. LeGeros, Biological and synthesized apatites, in Hydroxyapatite and Related Materials, ed. by P.W. Brown, B. Constantz (CRC Press, Boca Raton, 1994), pp. 3–28Google Scholar
  22. 22.
    Y. Pan, M.E. Fleet, Compositions of the apatite-group minerals: substitution mechanisms and controlling factors, in Phosphates: Geochemical, Geobiological and Material Importance, Reviews in Mineralogy and Geochemistry, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Mineralogical Society of America, Washington, DC, 2002), pp. 13–50CrossRefGoogle Scholar
  23. 23.
    P.M. Piccoli, P.A. Candela, Apatite in igneous systems, in Phosphates: Geochemical, Geobiological and Material Importance, Reviews in Mineralogy and Geochemistry, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Mineralogical Society of America, Washington, DC, 2002), pp. 255–292CrossRefGoogle Scholar
  24. 24.
    M. Hata, K. Okada, S. Iwai, Cadmium hydroxyapatite. Acta Crystallogr. B 34, 3062–3064 (1978)CrossRefGoogle Scholar
  25. 25.
    A.G. Evans, E.A. Charles, Fracture toughness determination by indentation. J. Am. Ceram. Soc. 59, 371–372 (1976)CrossRefGoogle Scholar
  26. 26.
    B. Wopenka, J.D. Pasteri, A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 25, 131–143 (2005)CrossRefGoogle Scholar
  27. 27.
    S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23, 1065–1072 (2002)CrossRefGoogle Scholar
  28. 28.
    S. Raynaud, E. Champion, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials 23, 1073–1080 (2002)CrossRefGoogle Scholar
  29. 29.
    S. Nsar, A. Hassine, K. Bouzouita, Sintering and mechanical properties of magnesium and fluorine co-substituted hydroxyapatites. J. Biomater. Nanobiotechnol. 4, 1–11 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Hidouri, K. Boughzala, J.P. Lecompte, K. Bouzouita, Sintering and mechanical properties of magnesium-containing fluorapatite. C. R. Phys. 10, 242–248 (2009)CrossRefGoogle Scholar
  31. 31.
    K.A. Gross, L.M. Rodríguez-Lorenzo, Sintered hydroxyfluorapatites. Part I: sintering ability of precipitated solid solution powders. Biomaterials 25(7–8), 1375–1384 (2004)CrossRefGoogle Scholar
  32. 32.
    N. Senamaud, D. Bernache-Assollant, E. Champion, M. Heughebaert, C. Rey, Calcination and sintering of hydroxyfluorapatite powders. Solid State Ionics 101–103, 1357–1362 (1997)CrossRefGoogle Scholar
  33. 33.
    K.A. Gross, K.A. Bhadand, Sintered hydroxyfluorapatites. Part III: sintering and resultant mechanical properties of sintered blends of hydroxyapatite and fluorapatite. Biomaterials 25(7–8), 1395 (2004)CrossRefGoogle Scholar
  34. 34.
    W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976)Google Scholar
  35. 35.
    R.I. Martin, P.W. Brown, Mechanical properties of hydroxyapatite formed at physiological temperature. J. Mater. Sci.: Mater. Med. 6, 138–143 (1995)Google Scholar
  36. 36.
    M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina, Fabrication, properties and applications of dense hydroxyapatite: a review. J. Funct. Biomater. 6, 1099–1140 (2015)CrossRefGoogle Scholar
  37. 37.
    K. Ozeki, Y. Fukui, H. Aoki, Influence of the calcium phosphate content of the target on the phase composition and deposition rate of sputtered films. Appl. Surf. Sci. 253, 5040–5044 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.High Institute of Applied Sciences and TechnologyGabes UniversityGabesTunisia
  2. 2.RU Catalysis and Materials for Environment and ProcessGabes UniversityGabesTunisia
  3. 3.MoscowRussia
  4. 4.Chemistry Department, Faculty of Sciences YanbuTaibah UniversityYanbu Al BahrKingdom of Saudi Arabia

Personalised recommendations