Highly Retained Electric and Mechanical Traits in Micron-Sized Glass Fibers Filled Epoxy Composite Based on Heat-Oxygen Ageing

  • Yefeng Feng
  • Qihuang Deng
  • Jianbing Hu
  • Cheng Peng
  • Qin Wu
  • Zhichao Xu


The epoxy based composite materials with a high ageing resistance property have attracted a wide attention in the field of high-electric-insulation electronic packaging. However, both of the highly retained electrical and mechanical performances are difficult to simultaneously achieve in composite materials once a longer heat-oxygen ageing at a high temperature is applied onto the materials. In order to realize the ageing-resistant high mechanical, electric breakdown and dielectric properties simultaneously in composite, in this work, an epoxy based composite filled with the high-insulation micron-sized glass fiber filler has been prepared, and its shock resistance strength, electric breakdown strength, dielectric constant, dielectric loss and conductivity after a severe heat-oxygen ageing have been investigated in detail, compared with that before the ageing. Although the ageing was operated at 150 °C for 25 days, the electric and mechanical properties of the composite were still finely retained, including 60% retention for shock resistance strength, 70% for breakdown strength, 80% for dielectric constant, dielectric loss below 0.1 and conductivity below 2 × 10−9 S cm−1. The epoxy matrix and glass fiber filler were responsible for the small decline and high retention for the properties in composite, respectively. This work might open the way for the large-scale preparation of the promising epoxy based composites with the highly retained ageing-resistant electric and mechanical properties based on incorporating the high-insulation fiber fillers.


Electric Mechanical Fiber Composite Ageing 



This work was financially supported by the Talent Introduction Scientific Research Initiation Projects of Yangtze Normal University (Grant Nos. 2017KYQD33 and 2017KYQD34) and the National Natural Science Foundation of China (Grant No. 51502309).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    I. Chang, J. Bae, J. Park, S. Lee, M. Ban, T. Park, Y. Lee, H. Song, Y. Kim, S. Cha, Energy 104, 107 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Ding, C. Xia, J. Wang, C. Wang, F. Chu, J. Mater. Sci. 51, 5008 (2016)CrossRefGoogle Scholar
  3. 3.
    P. Maiolino, R. Woolley, D. Branson, P. Benardos, A. Popov, S. Ratchev, Robot. Comput. Integr. Manuf. 48, 188 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Soares, I. Cesar, C. Santos, A. De Cardoso, P. Liporoni, E. Munin, A. Martin, Am. J. Dent. 20, 299 (2007)Google Scholar
  5. 5.
    B. Van, P. Campbell, A. Honeyman, R. Spears, P. Buschang, Angle Orthod. 81, 134 (2011)CrossRefGoogle Scholar
  6. 6.
    L. Yu, M. Shen, X. Ding, Y. Quan, Q. Chen, J. Appl. Polym. Sci. 115, 1718 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Haris, T. Adachi, W. Araki, J. Mater. Sci. 43, 3289 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Ampudia, E. Larrauri, E. Gil, M. Rodríguez, L. León, J. Appl. Polym. Sci. 71, 1239 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Cao, J. Hu, H. Fan, J. Wan, B. Li, Thermochim. Acta 593, 30 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Singh, B. Panda, S. Mohanty, S. Nayak, M. Gupta, Korean J. Chem. Eng. 34, 3028 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Cortés, S. Montserrat, J. Hutchinson, J. Appl. Polym. Sci. 63, 17 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Akatsuka, Y. Takezawa, S. Amagi, Polymer 42, 3003 (2001)CrossRefGoogle Scholar
  13. 13.
    N. Kouloumbi, L. Ghivalos, P. Pantazopoulou, Pigm. Resin Technol. 34, 148 (2005)CrossRefGoogle Scholar
  14. 14.
    M. Sangerano, E. Pallaro, I. Roppolo, G. Rizza, J. Mater. Sci. 44, 3165 (2009)CrossRefGoogle Scholar
  15. 15.
    R. Polanský, V. Mentlík, P. Prosr, J. Sušír, Polym. Test. 28, 428 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Ding, D. Liu, L. Duan, Polym. Degrad. Stab. 91, 1010 (2006)CrossRefGoogle Scholar
  17. 17.
    W. Fan, J. Li, Polym. Compos. 35, 975 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, J. Therm. Anal. Calorim. (2018) Google Scholar
  19. 19.
    S. Daikh, F. Zeggai, A. Bellil, A. Benyoucef, J. Phys. Chem. Solids 121, 78 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, J. Mol. Struct. 1150, 580 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, E. Morallon, Colloid Polym. Sci. 294, 1877 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Chouli, I. Radja, E. Morallon, A. Benyoucef, Polym. Compos. 38, E254 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Adiletta, J. Acoust. Soc. Am. 83, 404 (1988)CrossRefGoogle Scholar
  24. 24.
    S. Chen, Q. Wang, T. Wang, Mater. Des. 38, 47 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Bassi, R. Bedini, R. Pecci, P. Ioppolo, D. Laritano, F. Carinci, Int. J. Prosthodont. 29, 77 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, Y. Zhu, X. Fu, Y. Fu, Text. Res. J. 85, 980 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Eriksson, P. Boydell, K. Eriksson, J. Månson, A. Albertsson, J. Appl. Polym. Sci. 65, 1619 (2015)CrossRefGoogle Scholar
  28. 28.
    T. Charoensuk, U. Boonyang, C. Sirisathitkul, P. Panchawirat, P. Senthongkaew, Mater. Sci. 20, 97 (2014)Google Scholar
  29. 29.
    J. Souček, P. Trnka, J. Hornak, Energies 10, 1120 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Buch, M. Shanahan, J. Appl. Polym. Sci. 76, 987 (2015)CrossRefGoogle Scholar
  31. 31.
    F. Mao, C. Dong, S. Sharifi-Asl, P. Lu, D. Macdonald, Electrochim. Acta 144, 391 (2014)CrossRefGoogle Scholar
  32. 32.
    W. Peng, X. Huang, J. Yu, P. Jiang, W. Liu, Compos. A 41, 1201 (2010)CrossRefGoogle Scholar
  33. 33.
    J. Lu, S. Schmidt, D. Boesch, N. Pervez, R. York, S. Stemmer, Appl. Phys. Lett. 88, L1211 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYangtze Normal UniversityChongqingPeople’s Republic of China
  2. 2.Department of Fashion Communication and MediaJiangxi Institute of Fashion TechnologyNanchangPeople’s Republic of China
  3. 3.Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed ResearchJiangxi Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations