Adsorbents for Organic Dyes Based on PDMAEMA/POSS Hybrid Material via Thiol-Michael Addition Reaction

  • Zhenglong YangEmail author
  • Kangyu Fu
  • Jing Yu
  • Xinyan Liu


The organic/inorganic hybrid material of poly[2-(dimethyl amino)-ethyl methacrylate]/polyhedral oligomeric silsesquioxane (POSS–PDMAEMA) was synthesized via a thiol-Michael addition reaction. The structures of POSS–PDMAEMA and its self-assembly in aqueous solution were confirmed by 1H-NMR, TEM, DLS, UV–Vis and fluorescence spectrum. In aqueous solutions, POSS–PDMAEMA could self-assemble into micelles and its critical micelle concentration was 12.4 mg/L. POSS–PDMAEMA micelles can adsorb dyes efficiently, it could adsorb methyl red at a concentration of 10–100 mg/L and dithizone at a concentration of 20–100 mg/L, and could remove 98% methyl red and 90% dithizone within 30 s. Due to the good temperature and pH responsiveness, POSS–PDMAEMA micelles could release organic dye absorbed into the organic solution again when the solution was heated to 40 °C or pH value of the solution was adjusted to 4.0. It suggested that POSS–PDMAEMA can be utilized as an interesting “smart” materials for absorption of organic dyes.


POSS Stimuli-sensitive polymer Micelle Adsorbent for organic dye 



This study was funded by National Natural Science Foundation of China (No. 51622805 and U1633116), the opening fund for the subject of Transportation Engineering in Tongji University (2016J012306) and Research Project of Yunan Department of Transportation (Grant No. 2016(A)16). The authors are grateful for this financial support. The authors declare that they have no conflict of interest.

Supplementary material

10904_2018_964_MOESM1_ESM.doc (344 kb)
Supplementary material 1 (DOC 344 KB)


  1. 1.
    Z. Yang, X. Shi, J. Yuan, H. Pu, Y. Liu, Appl. Surf. Sci. 257, 138 (2010)CrossRefGoogle Scholar
  2. 2.
    D. Sun, T. Lu, F. Xiao, X. Zhu, G. Sun, J. Clean. Prod. 161, 1203 (2017)CrossRefGoogle Scholar
  3. 3.
    D. Sun, G. Sun, X. Zhu, F. Ye, J. Xu, Fuel 211, 609 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Illescas, M. Sánchez-Soto, H. Milliman, D.A. Schiraldi, A. Arostegui, High Perform. Polym. 23, 457 (2011)CrossRefGoogle Scholar
  5. 5.
    T. Heid, M.F. Fréchette, E. David, J. Mater. Sci. 50, 5494 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Li, X. Dong, K. Guo, Z. Wang, Z. Chen, C. Wesdemiotis, R.P. Quirk, W. Zhang, S.Z. Cheng, ACS Macro Lett. 1, 834 (2012)CrossRefGoogle Scholar
  7. 7.
    C.M. Damian, C.C. Ciobotaru, S.A. Gârea, H. Iovu, High Perform. Polym. 25, 566 (2013)CrossRefGoogle Scholar
  8. 8.
    Z. Yan, H. Xu, S. Guang, X. Zhao, W. Fan, X.Y. Liu, Adv. Funct. Mater. 22, 345 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Zhu, Y. Yuan, L. Li, Y. Du, F. Li, Mater. Des. 129, 91 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Kumar, Y.L. Dory, M. Lepage, Y. Zhao, Macromolecules 44, 7385 (2011)CrossRefGoogle Scholar
  11. 11.
    Z. Yang, K. Fu, J. Yu, P. Zhou, Z. Cheng, Polym. Adv. Technol. 29, 2273 (2018)CrossRefGoogle Scholar
  12. 12.
    Z. Yang, K. Fu, J. Yu, X. Shi, P. Zhou, Z. Cheng, Appl. Surf. Sci. 458, 70 (2018)CrossRefGoogle Scholar
  13. 13.
    L. Matějka, I.A. Kroutilová, J. Lichtenhan, T. Haddad, Eur. Polym. J. 52, 117 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Sethuraman, M. Vengatesan, T. Lakshmikandhan, M. Alagar, High Perform. Polym. 28, 340 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Devaraju, M.R. Vengatesan, M. Selvi, A.A. Kumar, M. Alagar, High Perform. Polym. 24, 85 (2012)CrossRefGoogle Scholar
  16. 16.
    V. Pistor, L. Puziski, A.J. Zattera, J. Mater. Sci. 50, 3697 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Ma, L. He, A. Pan, C. Zhao, J. Mater. Sci. 50, 2158 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Chen, B. Yao, W. Su, Y. Yang, Polymer 48, 1756 (2007)CrossRefGoogle Scholar
  19. 19.
    Z. Yang, S. Chen, Y. Zhao, P. Zhou, Z. Cheng, Sens. Actuators B 266, 422 (2018)CrossRefGoogle Scholar
  20. 20.
    S.T. Iacono, S.M. Budy, J.M. Mabry, D.W. Smith, Macromolecules 40, 9517 (2007)CrossRefGoogle Scholar
  21. 21.
    H.C. Kolb, M. Finn, K.B. Sharpless, Angew. Chem. Int. Ed. 40, 2004 (2001)CrossRefGoogle Scholar
  22. 22.
    T.B. Mai, T.N. Tran, M.R. Islam, J.M. Park, K.T. Lim, J. Mater. Sci. 49, 1519 (2014)CrossRefGoogle Scholar
  23. 23.
    M.R. Islam, L.G. Bach, J.M. Park, S.S. Hong, K.T. Lim, J. Appl. Polym. Sci. 127, 1569 (2013)CrossRefGoogle Scholar
  24. 24.
    Z. Yang, K. Fu, J. Yu, P. Zhou, Z. Cheng, J. Polym. Res. 25, 164 (2018)CrossRefGoogle Scholar
  25. 25.
    Z. Yang, X. Liu, X. Xu, S. Chen, F. Li, X. Zhu, Y. Du, Mater. Chem. Phys. 179, 65 (2016)CrossRefGoogle Scholar
  26. 26.
    Z. Yang, S. Chen, K. Fu, X. Liu, F. Li, Y. Du, P. Zhou, Z. Cheng, J. Appl. Polym. Sci. 135, 46626 (2018)CrossRefGoogle Scholar
  27. 27.
    L. Mespouille, O. Coulembier, D. Paneva, P. Degée, I. Rashkov, P. Dubois, J. Polym. Sci. A 46, 4997 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Xu, S. Bolisetty, M. Drechsler, B. Fang, J. Yuan, M. Ballauff, A.H. Müller, Polymer 49, 3957 (2008)CrossRefGoogle Scholar
  29. 29.
    J. Amalvy, E. Wanless, Y. Li, V. Michailidou, S. Armes, Y. Duccini, Langmuir 20, 8992 (2004)CrossRefGoogle Scholar
  30. 30.
    X. Li, Y. Li, S. Zhang, Z. Ye, Chem. Eng. J. 183, 88 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhenglong Yang
    • 1
    • 2
    Email author
  • Kangyu Fu
    • 1
    • 2
  • Jing Yu
    • 1
    • 2
  • Xinyan Liu
    • 1
    • 2
  1. 1.College of Transportation Engineering, Key Laboratory of Road and Traffic Engineering of Ministry of EducationTongji UniversityShanghaiChina
  2. 2.School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of EducationTongji UniversityShanghaiChina

Personalised recommendations