Advertisement

The Effect of RF Power on the Properties of Gallium and Aluminium Co-doped Zinc Oxide (GAZO) Thin Films

  • E. MuchuweniEmail author
  • T. S. Sathiaraj
  • J. Masanganise
  • N. Muchanyereyi
Article
  • 37 Downloads

Abstract

X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and spectrophotometry were used to study the effect of RF power on the properties of gallium and aluminium co-doped zinc oxide (GAZO) thin films for optoelectronic device fabrication. Two peaks appeared in the XPS spectra of the Zn 2p core-level at 1045 and 1022 eV, and these were assigned to \({\text{Zn}}~2{{\text{p}}_{1/2}}\) and \({\text{Zn}}~2{{\text{p}}_{3/2}}\), respectively. The O 1s core-level revealed peaks at 530 and 531 eV which indicated the presence of two different forms of oxygen. Raman spectroscopy confirmed the films’ hexagonal wurtzite crystal structure and revealed the presence of few defects and negligible residual tensile stress. Spectral dependence of the refractive index was analyzed on the basis of the Cauchy’s dispersion model and the Wemple and DiDomenico (WDD) single oscillator model. Low refractive indices (1.6–2.0) and nearly zero extinction coefficients were obtained in the visible region (400–700 nm), indicating the high transparency nature of the GAZO thin films. The optical band gap decreased with increasing RF power, in accordance with the Burstein–Moss effect. Low Urbach energy values were obtained at low RF power, indicating less structural disorder. The free carrier concentration to effective mass ratio \(({N_c}{\text{/}}{m^*})\), plasma frequency \(({\omega _P})\) and zero frequency dielectric constant \(({\varepsilon _\infty })\) were determined. Films deposited at 150 W exhibited the optimum optical properties, desirable for optoelectronic application.

Keywords

X-ray photoelectron spectroscopy Raman spectroscopy Optical constants RF power GAZO thin films Optoelectronic application 

Notes

Acknowledgements

This work was performed using Botswana International University of Science and Technology’s research facilities.

References

  1. 1.
    D.P. Singh, Synthesis and growth of ZnO nanowires. Sci. Adv. Mater. 2, 245–272 (2010)CrossRefGoogle Scholar
  2. 2.
    I. Udom, M.K. Ram, E.K. Stefanakos, A.F. Hepp, One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater. Sci. Semicond. Process. 16, 2070–2083 (2013)CrossRefGoogle Scholar
  3. 3.
    C. Chevalier-César, M. Capochichi-Gnambodoe, F. Lin, D. Yu, Y. Leprince-Wang, Effect of growth time and annealing on the structural defect concentration of hydrothermally grown ZnO nanowires. AIMS Mater. Sci. 3, 562–572 (2016)CrossRefGoogle Scholar
  4. 4.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 3, e00285 (2017)CrossRefGoogle Scholar
  5. 5.
    S.K. Das, F. Güell, C. Gray, P.K. Das, R. Grunwald, E. McGlynn, ZnO nanorods for efficient third harmonic UV generation: erratum. Opt. Mater. Express 4, 1243–1243 (2014)CrossRefGoogle Scholar
  6. 6.
    H.J. Zhou, S.S. Wong, A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2, 944–958 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Morkoç, Ü Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-WCH, Weinheim, 2009), pp. 246–247CrossRefGoogle Scholar
  8. 8.
    C.M. Muiva, T.S. Sathiaraj, K. Maabong, Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram. Int. 37, 555–560 (2011)CrossRefGoogle Scholar
  9. 9.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram. Int. 42, 10066–10070 (2016)CrossRefGoogle Scholar
  10. 10.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power. Ceram. Int. 42, 17706–17710 (2016)CrossRefGoogle Scholar
  11. 11.
    E. Reza, G.M. Reza, A. Hossein, Sol-gel derived Al and Ga co-doped ZnO thin films: an optoelectronic study. Appl. Surf. Sci. 290, 252–259 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Liu, W. Zhang, D. Song, Q. Ma, L. Zhang, H. Zhang, L. Zhang, R. Wu, Investigation of aluminium-gallium co-doped zinc oxide targets for sputtering thin film and photovoltaic application. J. Alloys Compd. 575, 174–182 (2013)CrossRefGoogle Scholar
  13. 13.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Low temperature synthesis of radio frequency magnetron sputtered gallium and aluminium co-doped zinc oxide thin films for transparent electrode fabrication. Appl. Surf. Sci. 390, 570–577 (2016)CrossRefGoogle Scholar
  14. 14.
    W. Lee, S. Shin, D.-R. Jung, J. Kim, C. Nahm, T. Moon, B. Park, Investigation of the electronic and optical properties in Al–Ga codoped ZnO thin films. Curr. Appl. Phys. 12, 628–631 (2012)CrossRefGoogle Scholar
  15. 15.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of O2/Ar flow ratio on Ga and Al co-doped ZnO thin films by RF sputtering for optoelectronic device fabrication. Mater. Res. Bull. 95, 123–128 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. A-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283–2292 (2013)CrossRefGoogle Scholar
  17. 17.
    Z.-W. Wu, S.-L. Tyan, H.-H. Chen, J.-C.-A. Huang, Y.-C. Huang, C.-R. Lee, T.-S. Mao, Temperature-dependent photoluminescence and XPS study of ZnO nanowires grown on flexible Zn foil via thermal oxidation. Superlatt. Microstuct. 107, 38–43 (2017)CrossRefGoogle Scholar
  18. 18.
    F. Decremps, J. Pellicer-Porres, A. Marco Saitta, J.C. Chervin, A. Polian, High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B 65, 092101–092105 (2002)CrossRefGoogle Scholar
  19. 19.
    K.A. Alim, V.A. Fonoberov, A.A. Balandin, Origin of the phonon frequency shifts in ZnO quantum dots. Appl. Phys. Lett. 86, 053103 (2005)CrossRefGoogle Scholar
  20. 20.
    L. Wang, Y. Pu, Y.F. Chen, C.L. Mo, W.Q. Fang, C.B. Xiong, J.N. Dai, F.Y. Jiang, MOCVD growth of ZnO films on Si(111) substrate using a thin AIN buffer layer. J. Cryst. Growth 284, 459–463 (2005)CrossRefGoogle Scholar
  21. 21.
    A. Ismail, M.J. Abdullah, The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J. King Saud Univ. Sci. 25, 209–215 (2013)CrossRefGoogle Scholar
  22. 22.
    R.G. Waykar, A.S. Pawbake, R.R. Kulkarni, A.A. Jadhavar, A.M. Funde, V.S. Waman, H.M. Pathan, S.R. Jadkar, Influence of RF power on structural, morphology, electrical, composition and optical properties of Al-doped ZnO films deposited by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 27, 1134–1143 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Caglar, S. Ilican, Y. Caglar, Influence of dopant concentration on the optical properties of ZnO: in films by sol-gel method. Thin Solid Films 517, 5023–5028 (2009)CrossRefGoogle Scholar
  24. 24.
    G.C. Xie, L. Fang, L.P. Peng, G.B. Liu, H.B. Ruan, F. Wu, C.Y. Kong, Effect of In-doping on the optical constants of ZnO thin films. Phys. Procedia 32, 651–657 (2012)CrossRefGoogle Scholar
  25. 25.
    M.H. Mamat, M.F. Malek, N.N. Hafizah, M.N. Asiah, A.B. Suriani, A. Mohamed, N. Nafarizal, M.K. Ahmad, M. Rusop, Effect of oxygen flow rate on the ultraviolet sensing properties of zinc oxide nanocolumn arrays grown by radio frequency magnetron sputtering. Ceram. Int. 42, 4107–4119 (2016)CrossRefGoogle Scholar
  26. 26.
    S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 448, 21–26 (2008)CrossRefGoogle Scholar
  27. 27.
    D.-Y. Zhang, P.-P. Wang, R.-I. Murakami, X.-P. Song, First-principles simulation and experimental evidence for improvement of transmittance in ZnO films. Prog. Nat. Sci. Mater. 21, 40–45 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Influence of the thickness on optical properties of sprayed ZnO hole-blocking layers dedicated to inverted organic solar cells. Energy Procedia 50, 603–609 (2014)CrossRefGoogle Scholar
  29. 29.
    N. Hamzaoui, A. Boukhachem, M. Ghamnia, C. Fauquet, Investigation of some physical properties of ZnO nanofilms synthesized by micro-droplet technique. Results Phys. 7, 1950–1958 (2017)CrossRefGoogle Scholar
  30. 30.
    T.S. Sathiaraj, Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level. Microelectron. J. 39, 1444–1451 (2008)CrossRefGoogle Scholar
  31. 31.
    S.K. Ahmmad, M.A. Samee, A. Edukondalu, S. Rahman, Physical and optical properties of zinc arsenic tellurite glasses. Results Phys. 2, 175–181 (2012)CrossRefGoogle Scholar
  32. 32.
    R.A. Smith, Semiconductors (Academic Publishers, Calcutta, 1989), pp. 461–463Google Scholar
  33. 33.
    P.O. Edward, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)Google Scholar
  34. 34.
    D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Electrical properties of bulk ZnO. Solid State Commun. 105, 399–401 (1998)CrossRefGoogle Scholar
  35. 35.
    A.-S. Gadallah, M.M. El-Nahass, Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating, Adv. Condens. Matter Phys. 2013, 234546 (2013)CrossRefGoogle Scholar
  36. 36.
    S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)CrossRefGoogle Scholar
  37. 37.
    S.H. Wemple, M. DiDomenico, Theory of the elasto-optic effect in non-metallic crystals. Phys. Rev. B 1, 193–202 (1970)CrossRefGoogle Scholar
  38. 38.
    D. Komaraiah, E. Radha, Y. Vijayakumar, J. Sivakumar, M.V.R. Reddy, R. Sayanna, Optical, structural and morphological properties of photocatalytic ZnO thin films deposited by spray pyrolysis technique. Mod. Res. Catal. 5, 130–146 (2016)CrossRefGoogle Scholar
  39. 39.
    R.H.A. Orainy, Single oscillator model and refractive index dispersion properties of ternary ZnO films by sol gel method. J. Sol-Gel. Sci. Technol. 70, 47–52 (2014)CrossRefGoogle Scholar
  40. 40.
    F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, The determination of the optical band gap and optical constants of non-crystalline and crystalline ZnO thin films deposited by spray pyrolysis. J. Optoelectron. Adv. Mater. 9, 2180–2185 (2007)Google Scholar
  41. 41.
    G. Malik, J. Jaiswal, S. Mourya, R. Chandra, Optical and other physical properties of hydrophobic ZnO thin films prepared by dc magnetron sputtering at room temperature. J. Appl. Phys. 122, 143105 (2017)CrossRefGoogle Scholar
  42. 42.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyBotswana International University of Science and Technology (BIUST)PalapyeBotswana
  2. 2.Department of Physics and MathematicsBindura University of Science Education (BUSE)BinduraZimbabwe

Personalised recommendations